Advertisement

Photoelectrochemistry of Anodic Films on Metal Electrodes

  • L. M. Peter
Chapter
Part of the NATO ASI Series book series (ASIC, volume 237)

Abstract

This chapter considers the generation of photocurrents in thin films on metal electrodes and reviews the application of photocurrent spectroscopy as an in-situ technique for studying metal surfaces covered with thin insulating or semiconducting layers. The conditions under which the collection efficiency for photogenerated carriers approaches unity are discussed, and it is shown that photocurrent spectra can be analysed to give absorption spectra and film thickness as well as information about the contact between film and substrate. Experimental examples of the quantitative application of photocurrent spectroscopy are described in order to illustrate the main features of the quantitative analysis.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. M. Peter, Ber. Bunsenges. Phys. Chem. 91 419 (1987)Google Scholar
  2. 2.
    L. M. Peter in ‘Comprehensive Chemical Kinetics’. Editor R. G. Compton. Elsevier, Amsterdam (in press)Google Scholar
  3. 3.
    U. Stimming, Electrochim. Acta 31 415 (1986)CrossRefGoogle Scholar
  4. 4.
    R. S. Crandall: in ‘Semiconductors and Semimetals’ Volume 21B, p245 Editor J. I. Pankove. Academic Press, New York (1984)Google Scholar
  5. 5.
    A. M. Goodman and A. Rose, J. Appl. Phys. 42 2823 (1971)CrossRefGoogle Scholar
  6. 6.
    T. Watanabe and H. Gerischer, J. Electroanal. Chem. 122 73 (1981)CrossRefGoogle Scholar
  7. 7.
    for a discussion of the Gartner equation see L. M. Peter in Specialist Periodical Report ‘Electrochemistry’. Volume 9, p Editor D. Pletcher. Royal Society of Chemistry, London (1984)Google Scholar
  8. 8.
    A. R. Newmark and U. Stimming, Electrochim. Acta 32 1217 (1987)CrossRefGoogle Scholar
  9. 9.
    R. C. Hughes and R. J. Sokel, J. Appl. Phys. 52 6743 (1981)CrossRefGoogle Scholar
  10. 10.
    M. A. Butler, J. Electrochem. Soc 130 2538 (1983)CrossRefGoogle Scholar
  11. 11.
    L. M. Peter, J. Electroanal. Chem. 98 48 (1979)CrossRefGoogle Scholar
  12. 12.
    J. S. Buchanan, N. P. Freestone and L. M. Peter, J. Electroanal. Chem. 182 383 (1985)CrossRefGoogle Scholar
  13. 13.
    J. S. Buchanan and L. M. Peter, Electrochim. Acta (in press)Google Scholar
  14. 14.
    L. M. Peter, J. Electroanal. Chem. 144 315 (1983)CrossRefGoogle Scholar
  15. 15.
    L. M. Abrantes and L. M. Peter, J. Electroanal. Chem. 150 593 (1983)CrossRefGoogle Scholar
  16. 16.
    R. Peat and L. M. Peter, J. Electroanal. Chem 228 351 (1987).CrossRefGoogle Scholar
  17. 17.
    C. T. Chen and B. D. Cahan, J. Electrochem. Soc. 129 17 (1982)CrossRefGoogle Scholar
  18. 18.
    F. Mollers, H. J. Tolle and R. Memming, J. Electrochem. Soc. 12 1160 (1974)CrossRefGoogle Scholar
  19. 19.
    J. S. Buchanan, Ph.D. Thesis, University of Southampton (1985)Google Scholar
  20. 20.
    L. M. Castillo and L. M. Peter, J. Electroanal. Chem 146 377 (1983)CrossRefGoogle Scholar
  21. 21.
    F. J. du Chatenier and J. van den Broek, Philips Res. Repts. 24 392 (1969)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1988

Authors and Affiliations

  • L. M. Peter
    • 1
  1. 1.Department of ChemistryThe UniversitySouthamptonUK

Personalised recommendations