Photoreduction and Photodegradation of Inorganic Pollutants: II. Selective Reduction and Recovery of Au, Pt, Pd, Rh, Hg, and Pb

  • Nick Serpone
  • Enrico Borgarello
  • Ezio Pelizzetti
Part of the NATO ASI Series book series (ASIC, volume 237)


Toxic metals in their various oxidation states can neither be biodegraded, nor can they be “chemically decontaminated”. Environmental pollution by toxic metals is a function of the form of the metals and not necessarily a function of their bulk concentration. In recent years much concern has been expressed about the state of our chemical environment. Contamination seems to have no boundaries. Experiments with semiconductor materials, coupled or uncoupled to suitable redox catalysts, have demonstrated the feasibility of carrying out several reactions induced by light. Amongst these reactions is the attractive potential to utilize and develop a technology based on semiconductors that will mediate either the reduction of metals, toxic to the environment or of strategic and economic importance, or the oxidation of organic products that are harmful to the environment (for example, pesticides, herbicides, etc…). This lecture summarizes, albeit not exhaustively, metals pollution and their toxic nature, the traditional technologies employed to detoxify aqueous effluents. Finally, it discusses at some length recent work on a new developing technology, based principally on semiconductor materials (TiO2, WO3, ZnO, among others) irradiated by light of suitable energy. The results seem encouraging!


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.J. Lantzy and F.T. Mackenzie, Geochim.Cosmochim.Acta 43, 511 (1979).CrossRefGoogle Scholar
  2. 2.
    J. Galloway, J.D. Thornton, S.A. Thornton, H.L. Volchok, and R.A. McLean, Atmos.Environ., 16, 1647 (1982)CrossRefGoogle Scholar
  3. J.D. Thornton and S.J. Eisenreich, Atmos.Environ., 8, 1945 (1982).CrossRefGoogle Scholar
  4. 3.
    A. Leonard, G.B. Gerber, P. Jacqnet, and R.R. Lanwerys, in “Mutagenicity, Carcinogenicity, and Teratogenicity of Industrial Pollutants”, M. Kirsch-Volders, Ed., Plenum Press, New York, 1984.Google Scholar
  5. 4.
    M. Palmark, in “Chemical Waste — Handling and Treatment”, K.R. Muller, Managing Ed., Springer-Verlag, Berlin, 1986, p.31.Google Scholar
  6. 5.
    B. Venugopal and T.D. Luckey, “Metal Toxicity in Mammals. 2”, Plenum Press, New York, 1978,Google Scholar
  7. 6.
    T.D. Luckey and B. Venugopal, “Metal Toxicity in Mammals. 1”, Plenum Press, New York, 1978.Google Scholar
  8. 7.
    “Mercurial Pesticides, Man, and the Environment”, United States Environmental Protection Agency, Special Pesticide Review Group, 1971.Google Scholar
  9. 8.
    D.V. Frost, CRC Critical Review in Toxicology, 1, 467 (1972).CrossRefGoogle Scholar
  10. 9.
    D. Hanson, Chem. & Eng.News, March 23, 1987, p.17.Google Scholar
  11. 10.
    Chem. & Eng. News, March 23, 1987, p. 17.Google Scholar
  12. 11.
    J. Josephson, Environ.Sc.Technol., 20, 23 (1986).CrossRefGoogle Scholar
  13. 12.
    W.A. Rader and J.E. Spaulding, in “Toxicity of Heavy Metals in the Environment”, Part 2, F.W. Oehme, Ed., Marcel Dekker Inc., New York, 1979, p.669.Google Scholar
  14. 13.
    E. Browning, “Toxicity of Industrial Metals”, Butterworths, London, 1969.Google Scholar
  15. 14.
    D.R. Cassidy and A. Furr, in “Toxicity of Heavy Metals in the Environment”, Part 1, F.W. Oehme, Ed., Marcel Dekker Inc., New York, 1978, p.303.Google Scholar
  16. 15.
    L.H. Russell, Jr., in “Toxicity of Heavy Metals in the Environment”, Part 1, F.W. Oehme, Ed., Marcel Dekker Inc., New York, 1978, p.3.Google Scholar
  17. 16.
    “Lead in the Canadian Environment”, Associate Committee on Scientific Criteria for Environmental Quality, National Research Council of Canada, Report No. 13682, 1977.Google Scholar
  18. 17.
    “The Lead Debate, the Environment, Toxicology and Child Health”, R. Lansdown and W. Yule, Eds., Croom Helm Ltd., London, 1986.Google Scholar
  19. 18.
    A.P. Jaques, “National Inventory of Sources and Releases of Lead (1982)”, Report EPS-5/HA/3, September 1985, Environment Canada, Environmental Protection Service.Google Scholar
  20. 19.
    J.F. Jaworski, “Effects of Lead in the Environment — Quantitative Aspects”, National Research Council of Canada, 1979, Publ.No. NRCC 16736.Google Scholar
  21. 20.
    S.J. Eisenreich, N.A. Metzer, and N.R. Urban, Environ. Sci.Technol., 20, 171 (1986).CrossRefGoogle Scholar
  22. 21.
    Chem.& Eng.News, June 1, 1987, p.15.Google Scholar
  23. 22.
    “Ambient Air Particulate Lead Concentrations in Canada 1975–1983”, Report EPS 7/AP/15, September 1985, Environment Canada, Environmental Protection Service.Google Scholar
  24. 23.
    K.J. Yost, in “Cadmium Toxicity”, J.H. Mennear, Ed., Marcel Dekker Inc., New York, 1979, p.181.Google Scholar
  25. 24.
    L. Friberg, M. Piscator, G.F. Nordberg, and T. Kjellstrom, “Cadmium in the Environment”, 2nd.Edn., CRC Press Inc., Cleveland, Ohio, 1974.Google Scholar
  26. 25.
    J. Haggin, Chem.& Eng.News, September 8, 1986, p.37.Google Scholar
  27. 26.
    Subcommittee on Platinum Group Metals, Committee on Medical and Biologic Effects of Environmental Pollutants, “Platinum Group Metals”, Division of Medical Sciences, Assembly of Life Sciences, National Research Council, National Academy of Sciences, Washington, D.C., 1977.Google Scholar
  28. 27.
    J.W. Patterson, Director of the Industrial Waste Elimination Research Centre, Illinois Institute of Technology, as quoted by J. Haggin in Chem.& Eng.News, September 8, 1986, p.37.Google Scholar
  29. 28.
    N. Serpone, E. Borgarello, and E. Pelizzetti, in “New Trends and Applications of Photocatalysis and Photoelectrochemistry for Environmental Problems”, M. Schiavello, Ed., D. Reidel.Publ.Co., Dordrecht, The Netherlands, 1987/88.Google Scholar
  30. 29.
    D. Martinetz, in “Chemical Waste — Handling and Treatment”, K.R. Muller, Managing Ed., Springer-Verlag, Berlin, 1986, p.177.Google Scholar
  31. 30.
    H.D. Saier, et al., Dechema-Monographien, 80, 211 (1976).Google Scholar
  32. 31.
    K. Marquardt, in “Taschenbuch der Abwasserbehandlung”, L. Hartinger, Ed., Carl Hanser Verlag, Munich/Vienna, 1976, p.160.Google Scholar
  33. 32.
    M.D. Rosenzweig, Chem.Engng., 82, 60 (1975).Google Scholar
  34. 33.
    J. Bonnet, et al., Tech.Eau Assainissement 397, 15 (1980).Google Scholar
  35. 34.
    H. Bieling and G. Kreutzenberger, “Moglichkeiten der Abtrennung und Ruckgewinnung von Quecksilber aus Abwassern and Alkalilaugen der Chloralkalielektrolyse”, Vortrag auf der Haupjahrestagung der Chemischen Gesellschaft der DDR, Dresden, 1977.Google Scholar
  36. 35.
    Verfahrensberichte zur Physikalisch-chemischen Behandlung von Abwassern, 7, Bericht, Flockung and Fallung, Hrsg., vom Verband der Chemischen Industrie, Köln, 1977.Google Scholar
  37. 36.
    T. Yano, et al., Dechema-Monographien, 80, 179 (1976).Google Scholar
  38. 37.
    T. Aratani, et al., Bull.Chem.Soc.Jpn., 51, 2705 (1978); 52, 218 (1979).CrossRefGoogle Scholar
  39. 38. a)
    Verfahrensberichte zur Physikalisch=chemischen Behandlung von Abwassern, 9, Bericht, Abwasserreinigung mit Ionenaustauschern und Adsorberharzen, Hrsg., vom Verband der Chemischen Industrie, Koln, 1978.Google Scholar
  40. b).
    H. Schlegel, Galvanotechnik, 56, 73 (1965).Google Scholar
  41. c).
    R. Weiner, Galvanotechnik, 64, 99 (1973).Google Scholar
  42. d).
    K. Marquardt, Metalloberflache, 23, 231 (1969).Google Scholar
  43. 39.
    Das Techn.Umweltmagazin, October 28, 1976.Google Scholar
  44. 40.
    K.H. Bergk, et al., Z.Chem., 17, 85 (1977).CrossRefGoogle Scholar
  45. 41.
    G. DeJong and C.N.J. Rekers, 3rd Symposium uber Ionenaustauscher, Symposiumsbericht, Balatonfured, Hungary, May 1974.Google Scholar
  46. 42.
    G.R. DeJong and C.N.J. Rekers, J.Chromatogr., 102, 443 (1974).CrossRefGoogle Scholar
  47. 43.
    A. Schmidt, “Angewandte Elektrochemie”, Weinheim, Verlag Chemie, 1976, p.267.Google Scholar
  48. 44.
    P. Martin, Abwassertechnik, 9 (1967).Google Scholar
  49. 45.
    D. Clifford, S. Subramonian, and T.J. Sorg., Environ. Sci.Technol., 20, 1072 (1986).CrossRefGoogle Scholar
  50. 46.
    H. Gerischer and F. Willig, Top.Curr.Chem., 61, 33 (1976)Google Scholar
  51. H. Gerischer, Pure Appl.Chem., 52, 2649 (1980)CrossRefGoogle Scholar
  52. A.J. Nozik, Annu.Rev.Phys.Chem., 29, 189 (1978)CrossRefGoogle Scholar
  53. R. Memming, Electrochim.Acta, 25, 77 (1980)CrossRefGoogle Scholar
  54. M. Wrighton, Acc.Chem.Res., 12, 303 (1979)CrossRefGoogle Scholar
  55. A. Heller, Acc.Chem.Res., 14, 154 (1981)CrossRefGoogle Scholar
  56. H.P. Maruska and A.K. Ghosh, Sol.Energy, 20, 443 (1978).CrossRefGoogle Scholar
  57. 47.
    A.J. Bard, J.Photochem., 10, 59 (1979)CrossRefGoogle Scholar
  58. A.J. Bard, J.Phys.Chem., 86, 172 (1982)CrossRefGoogle Scholar
  59. A.J. Bard, Science. 207, 139 (1980).CrossRefGoogle Scholar
  60. 48.
    D.E. Aspnes and A. M. Heller, J.Phys.Chem., 87, 4919 (1983).CrossRefGoogle Scholar
  61. 49.
    G. Hodes and M. Gratzel, Nouv.J.Chim., 8, 509 (1984).Google Scholar
  62. 50.
    H. Gersicher, J.Phys.Chem., 88, 6096 (1984).CrossRefGoogle Scholar
  63. 51.
    M.D. Ward, J.R. White, and A.J. Bard, J.Am.Chem.Soc., 105, 27 (1983).CrossRefGoogle Scholar
  64. 52.
    E. Pelizzetti, M. Barbeni, E. Pramauro, W. Erbs, E. Borgarello, M.A. Jamieson, and N. Serpone, Quimica Nova (Brasil), 288 (1985).Google Scholar
  65. 53.
    M. Gratzel, Ed., “Energy Resources through Photochemistry and Catalysis”, Academic Press, New York, 1983.Google Scholar
  66. 54.
    J. Kiwi, K. Kalyanasundaram, and M. Gratzel, Struct. Bonding (Berlin), 49, 39 (1982).Google Scholar
  67. 55.
    B. Krautler and A.J. Bard, J.Am.Chem.Soc., 100, 4317 (1978)CrossRefGoogle Scholar
  68. E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, and M. Gratzel, J.Am.Chem.Soc., 103, 6324 (1981)CrossRefGoogle Scholar
  69. E. Borgarello and E. Pelizzetti, Chim.Ind. (Milano), 65, 474 (1983)Google Scholar
  70. J.S. Curran, J. Domenech, N. Jaffrezic-Renault, and R. Philippe, J.Phys.Chem., 89, 957 (1985)CrossRefGoogle Scholar
  71. T.M. Tricot and J.H. Fendler, J.Am.Chem. Soc., 106, 2475 (1984)CrossRefGoogle Scholar
  72. F. Mollers, H.J. Tolle, and R. Memming, J.Electrochem.Soc., 121, 1160 (1974)CrossRefGoogle Scholar
  73. H. Hada, H. Tanemura, and Y. Yonezawa, Bull.Chem.Soc. Jpn., 51, 3154 (1978)CrossRefGoogle Scholar
  74. H. Hada, Y. Yonezawa, and M. Saikawa, Bull.Chem.Soc.Jpn., 55, 2010 (1982).CrossRefGoogle Scholar
  75. 56.
    J.R. Darwent and A. Mills, J.Chem.Soc.Faraday Trans.II, 78, 359 (1978)CrossRefGoogle Scholar
  76. E. Borgarello and E. Pelizzetti, Inorg.Chim.Acta, 91, 295 (1984)CrossRefGoogle Scholar
  77. N. Seiichi, O. Bunsho, K. Hiroshi, and K. Tsutumu, J.Chem.Soc.Faraday Trans.I, 79, 2685 (1983)CrossRefGoogle Scholar
  78. Y. Oosawa and M. Gratzel, J.Chem.Soc. Chem.Commun., 1624 (1984)Google Scholar
  79. N.M. Dimitrijevic, Li Shuben, and M. Gratzel, J.Am.Chem.Soc., 106, 6565 (1984)CrossRefGoogle Scholar
  80. H. Reiche, W.W. Dunn, and A.J. Bard, J.Phys. Chem., 83, 2248 (1979)CrossRefGoogle Scholar
  81. W. Erbs, J. DeSilvestro, E. Borgarello, and M. Gratzel, J.Phys.Chem., 88, 4001 (1984)CrossRefGoogle Scholar
  82. 57.
    E. Borgarello, R. Harris, and N. Serpone, Nouv.J.Chim., 9, 743 (1985).Google Scholar
  83. 58.
    E. Borgarello, N. Serpone, G. Emo, R. Harris, E. Pelizzetti, and C. Minero, Inorg.Chem., 25, 4499 (1986).CrossRefGoogle Scholar
  84. 59.
    N. Serpone, E. Borgarello, M. Barbeni, E. Pelizzetti, P. Pichat, J.-M. Herrmann, and M.A. Fox, J.Photochem., 36, 373 (1987).CrossRefGoogle Scholar
  85. 60.
    J. Domenech and A. Prieto, Electrochim.Acta, 31, 1317 (1986).CrossRefGoogle Scholar
  86. 61.
    J. Domenech, M. Andres, and J. Munoz, Tecnologia del Agua, 29, 35 (1986).Google Scholar
  87. 62.
    K. Tanaka, K. Harada, and S. Murata, Sol.Energy, 36, 159 (1986).CrossRefGoogle Scholar
  88. 63.
    J. Domenech, J. Curran, N. Jaffrezic-Renault, and R. Philippe, J.Chem.Research (S), 226 (1986).Google Scholar
  89. 64.
    J.S. Curran, J. Domenech, N. Jaffrezic-Renault, and R. Philippe, J.Phys.Chem., 89, 957 (1985).CrossRefGoogle Scholar
  90. 65.
    N. Serpone, Y.K. Ah-You, T.P. Tran, R. Harris, E. Pelizzetti, and H. Hidaka, Sol.Energy, in press (1987).Google Scholar
  91. 66.
    N. Serpone, D. Lawless, A. Res, and R. Harris, work in progress.Google Scholar
  92. 67.
    D.W. Darnall, B. Greene, M.T. Henzl, J.M. Hosea, R.A. McPherson, J. Sneddon, and M.D. Alexander, Environ. Sci.Technol., 20, 206 (1986).CrossRefGoogle Scholar
  93. 68.
    The colour of the powder during irradiation of Au(III) solutions changes from white (t = 0) to purple indicating the formation of Au(0) colloidal deposits on TiO2 [see J.W. Mellor, “A Comprehensive Treatise on Inorganic and Theoretical Chemistry”, vol.III, Longmans, Green and Co., New York, 1923, p.491.Google Scholar
  94. 69.
    E. Borgarello and E. Pelizzetti, Chim.Ind.(Milano), 65, 474 (1983).Google Scholar
  95. 70.
    N. Hedley and H. Tabachnick, “Chemistry of Cyanadation, Mineral Dressing Notes”, No. 23, American Cyanamid Co., December 1968.Google Scholar
  96. 71.
    M.I. Brittan, Am.Sci., 62, 402 (1974).Google Scholar
  97. 72.
    E.M. Wise, “Gold Recovery, Properties, and Applications”, Van Nostrand, Princeton, NJ, 1964.Google Scholar
  98. 73.
    Y. Kinata and C. Wolowodiuk, Plating Surf.Finish, 66, 50 (1979).Google Scholar
  99. 74.
    H.E. Christiansen and E.J. Fairchild (eds.), “Registry of Toxic Effects of Chemical Substances”, U.S. Department of Health, Education and Welfare, Rockville, MD, 20852, 1976 (HEW Publ.No. NIOSH 76–191).Google Scholar
  100. 75.
    F.A. Cotton and G. Wilkinson, “Advanced Inorganic Chemistry” 4th. edn., Wiley, New York, 1980, p.369.Google Scholar
  101. 76.
    S.N. Frank and A.J. Bard, J.Am.Chem.Soc., 99, 4667 (1977); 99, 303 (1977)CrossRefGoogle Scholar
  102. S.N. Frank and A.J. Bard, J.Phys.Chem., 81, 1484 (1977).CrossRefGoogle Scholar
  103. 77.
    A.I. Vogel, “Macro and Semimicro Qualitative Inorganic Analysis”, 4th. edn., Longmans, London, 1954.Google Scholar
  104. 78.
    A.J. Bard, Ed., “Encyclopedia of Electrochemistry of the Elements”, vol.4, Dekker, New York, 1973, p.87.Google Scholar
  105. 79.
    Handbook of Chemistry & Physics, 51st. edn., The Chemical Rubber Co., Cleveland, OH, 1971–1972.Google Scholar
  106. 80.
    G.D. Parfitt, Progr.Surf.Membr.Sci., 11, 181 (1967)CrossRefGoogle Scholar
  107. A.P. Boehm and M.Z. Hermann, Z.Anorg.Allg.Chem., 352, 156 (1967).CrossRefGoogle Scholar
  108. 81.
    A.J. Bard, Ed., “Encyclopedia of Electrochemistry of the Elements”, vol. 9, Dekker, New York, 1982, p.l.Google Scholar
  109. 82.
    W.M. Latimer, “Oxidation Potentials”, 2nd.edn., Prentice-Hall Inc., Englewood, NJ., 1952, p.181.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1988

Authors and Affiliations

  • Nick Serpone
    • 1
  • Enrico Borgarello
    • 2
  • Ezio Pelizzetti
    • 3
  1. 1.Department of ChemistryConcordia UniversityMontrealCanada
  2. 2.EniRicercheSan Donato MilaneseItaly
  3. 3.Dipartimento di Chimica AnaliticaUniversita di TorinoTorinoItaly

Personalised recommendations