Advertisement

Reduction of Dinitrogen to Ammonia in Irradiated Heterogeneous Systems

  • Vincenzo Augugliaro
  • Leonardo Palmisano
Part of the NATO ASI Series book series (ASIC, volume 237)

Abstract

The recent developments of the research in the field of dinitrogen reduction to ammonia at mild conditions of pressure and temperature are reported. After a brief historical recapitulation of the traditional thermal process, the new routes for NH3 synthesis (biological photosynthesis, direct electrochemical reduction, and photocatalytic reduction) are presented and critically discussed. A particular attention is devoted to heterogeneous photocatalytic reduction performed by irradiating pure, mixed, and doped semiconducting catalysts in gas-solid and liquid-solid systems. The fixation of dinitrogen in aqueous solutions containing complexes and photoactive particulate systems is also reported. Finally the studies related to the determination of the relation between the activity and the intrinsic properties of the photocatalysts are reviewed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Topham, S. A. 1985, “Catalysis”, Anderson, J. R. and Boudart, M. (Eds.), Springer-Verlag, Berlin, vol.7 pp.1–50.CrossRefGoogle Scholar
  2. 2.
    Carr, N. G. and Whitton, B. A. 1982, “The Biology of Cyanobacteria”, Blackwell Scientific Publications, Oxford.Google Scholar
  3. 3.
    Hall, D. H. 1987, Nouv. J. Chimie 11, pp.179–186.Google Scholar
  4. 4.
    Ramos, J. L., Guerrero, M. G. and Losada, M. 1984, Appl. Environ. Microbiol. 48, pp.114–118.Google Scholar
  5. 5.
    Palit, S. R. 1976, J. Indian Chem. Soc. 53, p.328.Google Scholar
  6. 6.
    Ghosh, S. 1983, J. Indian Chem. Soc. 60, pp.996–997.Google Scholar
  7. 7.
    Sclafani, A., Augugliaro, V. and Schiavello, M. 1983, J. Electrochem. Soc. 130, pp.734–736.CrossRefGoogle Scholar
  8. 8.
    Sclafani, A., Augugliaro, V. and Schiavello, M. 1984, Proc. IX Iberoamerican Symposium On Catalysis, Lisbon (Portugal), pp.685–692.Google Scholar
  9. 9.
    Grayer, S. and Halmann, M. 1984, J. Electroanal. Chem. 170, pp.363–368.CrossRefGoogle Scholar
  10. 10.
    Schrauzer, N. and Guth, T. D. 1977, J. Am. Chem. Soc. 99, pp.7189–7193.CrossRefGoogle Scholar
  11. 11.
    Formenti, M. and Teichner, S. J. 1978, “Catalysis”, Dower, D. A. and Kemball, C. (Eds.) The Chemical Society, London, vol. 2, pp.87–106.CrossRefGoogle Scholar
  12. 12.
    van Damme, H. and Hall, W. K. 1979, J. Am. Chem. Soc. 101, pp.4373–4374.CrossRefGoogle Scholar
  13. 13.
    Pichat, P. 1985, “Photoelectrochemistry, Photocatalysis and Photoreactors. Fundamentals and Developments”, Schiavello, M. (Ed.), D. Reidel Publishing Co., Dordrecht (The Netherlands), pp.425–455.CrossRefGoogle Scholar
  14. 14.
    Teichner, S. J. and Formenti, M. 1985, “Phptoelectrochemistry, Photocatalysis and Photoreactors. Fundamentals and Developments”, Schiavello, M. (Ed.), D. Reidel Publishing Co., Dordrecht (The Netherlands), pp.457–489.CrossRefGoogle Scholar
  15. 15.
    Schiavello, M. and Sclafani, A. 1985, “Photoelectrochemistry, Photocatalysis and Photoreactors. Fundamentals and Developments”, Schiavello, M. (Ed.), D. Reidel Publishing Co., Dordrecht (The Netherlands), pp.503–519.CrossRefGoogle Scholar
  16. 16.
    Bickley, R. I., Navio, J. A. and Vishwanathan, V. 1986, Proc. 6th Intern. Conference on Photochemical Conversion and Storage of Solar Energy, Paris.Google Scholar
  17. 17.
    Navio, J. A., Bickley, R. I. and Gonzalez-Carreno, T. 1986, Proc. IXth European Conference on Chemistry of Interfaces, Zakopane (Poland).Google Scholar
  18. 18.
    Endoh, E., Leland J. K. and Bard, A. J. 1986, J. Phys. Chem. 90, pp.6223–6226.CrossRefGoogle Scholar
  19. 19.
    Khader, M. M., Lichtin, N. N., Vurens, G. H., Salmeron, M. and Somorjai, G. A. 1987, Langmuir 3, pp.303–304.CrossRefGoogle Scholar
  20. 20.
    Lichtin, N. N. 1984, U.S. Patent 4427509.Google Scholar
  21. 21.
    Lichtin, N. N. and Vijayakumar, K. M. 1984, U.S. Patent 4427510.Google Scholar
  22. 22.
    Lichtin, N. N. and Berman, E. 1984, U.S. Patent 4443311.Google Scholar
  23. 23.
    Lichtin, N. N. and Vijayakumar, K. M. 1986, J. Indian Chem. Soc. 63, pp.29–34.Google Scholar
  24. 24.
    Lichtin, N. N. and Vijayakumar, K. M. 1986, U.S. Patent 4612096.Google Scholar
  25. 25.
    Augugliaro, V., Lauricella, A., Rizzuti, L., Schiavello, M. and Sclafani, A. 1982, Int. J. Hydrogen Energy 7, pp.845–849.CrossRefGoogle Scholar
  26. 26.
    Augugliaro, V., D’Alba, F., Rizzuti, L., Schiavello, M. and Sclafani, A. 1982, Int. J. Hydrogen Energy 7, pp.851–855.CrossRefGoogle Scholar
  27. 27.
    Schiavello, M., Rizzuti, L., Bickley, R. I., Navio, J. A. and Yue, P. L. 1984, Proc. 8th Int. Congress on Catalysis, Verlag Chemie, Basel vol III, pp.383–394.Google Scholar
  28. 28.
    Li, S., Wen, X., Cui, C. and Hua, Z. 1983, Huaxue Tongbao 3, p.13.Google Scholar
  29. 29.
    Xiao, L., Wang, D., Yu, S., Quan, H. and Li, T. 1985, Ziran Zazhi 8, pp.920–921.Google Scholar
  30. 30.
    Xiao, L., Wang, D., Yu, S., Quan, H. and Li, T. 1986, Taiyangneng Xuebao 7, pp.39–45.Google Scholar
  31. 31.
    Wang, D., Xiao, L., Li, T. and Hong, G. 1986, Taiyangneng Xuebao 7, pp.400–406.Google Scholar
  32. 32.
    Endoh, E. and Bard, A. J. 1987, Nouv. J. Chimie 11, pp.217–219.Google Scholar
  33. 33.
    Taqui Khan, M. M., Bhardwaj, R. C. and Bhardwaj, C. 1986, Indian J. Chem. Sect. A 25, pp.1–2.Google Scholar
  34. 34.
    Taqui Khan, M. M., Bhardwaj, R. C. and Jadhav, C. M. 1985, J. Chem. Soc. Chem. Comm., pp.1690–1692.Google Scholar
  35. 35.
    Kalyanasundaram, K., Borgarello, E., Duanghong, D. and Gratzel, M. 1981, Angew. 20, pp.987–988.CrossRefGoogle Scholar
  36. 36.
    Diamantis, A. A. and Dubrawski, J. V. 1981, Inorg. Chem. 20, pp.1142–1150.CrossRefGoogle Scholar
  37. 37.
    Cordischi, D., Burriesci, N., D’Alba, F., Petrera, M., Polizzotti, G. and Schiavello, M. 1985, J. Solid State Chem. 56, pp.182–190.CrossRefGoogle Scholar
  38. 38.
    Bickley, R. I., Gonzalez-Carreno, T. and Palmisano, L. 1987, “Preparation of Catalysts IV”, Delmon, B., Grange, P., Jacobs, P. A., Poncelet, G. (Eds.), Elsevier, Amsterdam, pp.297–306.CrossRefGoogle Scholar
  39. 39.
    Palmisano, L., Schiavello, M. and Bickley, R. I. 1987, to be published.Google Scholar
  40. 40.
    Augugliaro, V., Palmisano, L., Schiavello, M., Sclafani, A., Conesa, J. C. and Soria, J. 1987, to be published.Google Scholar
  41. 41.
    Rothenberger, G., Moser, J., Gratzel, M., Serpone, N. and Sharma, D. K. 1985, J. Am. Chem. Soc. 107, pp.8054–8059.CrossRefGoogle Scholar
  42. 42.
    Nosaka, Y., Ishizuka, Y., Norimatsu, K and Miyama, H. 1984, Bull. Chem. Soc. Jpn 57, pp.3066–3069.CrossRefGoogle Scholar
  43. 43.
    Nosaka, Y., Norimatsu, K. and Miyama, H. 1984, Chem. Phys. Lett. 106, pp.128–131.CrossRefGoogle Scholar
  44. 44.
    Nosaka, Y., Ishizuka, Y and Miyama, H. 1986, Ber. Bunsenges. Phys. Chem. 90, pp.1199–1204.CrossRefGoogle Scholar
  45. 45.
    Qian, X., Wang, D., Hong, G. Xiao, L. and Li, T. 1986, Gaodeng Xuexiao Huaxue Xuebao 7, pp.369–371.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1988

Authors and Affiliations

  • Vincenzo Augugliaro
    • 1
  • Leonardo Palmisano
    • 1
  1. 1.Istituto di Ingegneria ChimicaUniversità di PalermoPalermoItaly

Personalised recommendations