A Simple Model for Leaf Optical Properties in Visible and Near-Infrared: Application to the Analysis of Spectral Shifts Determinism

  • F. Baret
  • B. Andrieu
  • G. Guyot


A simple model of leaf optical properties spectra is derived from experimental measurements of leaf characteristics. It allows to simulate reflectance and transmittance spectra of the leaf depending on it’s chlorophyll concentration and leaf mesophyll structure.

This model is used to generate relationships between chlorophyll concentration, leaf mesophyll structure and spectral shifts in the red edge. Results shows that an increase in chlorophyll concentration induces spectral shifts towards longer wavebands. But the effect of leaf mesophyll structure is significant, particularly for high chlorophyll concentration.

Key Words

Remote Sensing Reflectance Transmittance Leaf Chlorophyll Model Spectral-shift High spectral resolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen WA, Richardson AJ, 1968. Interaction of light with a plant canopy. J. Optic. Soc. Amer. 58:1023–1028CrossRefGoogle Scholar
  2. Allen WA, Gausman HW, Richardson AJ, Thomas JR, 1969. Interaction of isotropic light with compact plant leaf. J. Optic. Soc. Amer. 59(10)Google Scholar
  3. Allen WA, 1973. Willstäter — Stoll theory of leaf evaluated by ray tracing. Applied optics 12(10):2448–2453CrossRefPubMedGoogle Scholar
  4. Baret F, Champion I, Guyot G, Podaire A, 1987. Monitoring wheat canopies with high spectral resolution radiometer. Remote Sens. Environ. 22:367–378Google Scholar
  5. Bouvier A, Gelis F, Huet S, Messean A, Neveu P, 1985. CS-NL. INRA biometrie, 78350 Jouy en Josas, FranceGoogle Scholar
  6. Gates DM, 1965. Spectral properties of plants. Applied Optics 4(1):11-20CrossRefGoogle Scholar
  7. Grant L, 1987. Diffuse and specular characteristics of leaf reflectance. Remote Sens. Environ. 22:309–322Google Scholar
  8. Horler DNH, Barber J, Barringer AR, 1980. Effect of heavy metals on the absorbance and reflectance spectra of plants. Int. J. Remote Sens. 1(2):121–136CrossRefGoogle Scholar
  9. Horler DNH, Dockray M, Barber J, 1983. The red edge of plant leaf reflectance. Int. J. Remote Sens. 4(2):273–288CrossRefGoogle Scholar
  10. Kumar R, Silva L, 1973. Reflectance model of a plant leaf. LARS information note n 022473Google Scholar
  11. Lichtenthaler HK, 1987. Chlorophyll and carotenoïd: Pigments of photosynthetic membranes, in “methods in enzymology” vol 48:350–382CrossRefGoogle Scholar
  12. Schutt JB, Rowland RR, Heartly WH, 1984. A laboratory investigation of a physical mecanism for the extended infrared absorption (“red-shift”) in wheat. Int. J. Remote Sens. 5(1):95–102CrossRefGoogle Scholar
  13. Vanderbilt VC, Grant L, 1983. Light polarization measurements: A method to determine the specular and diffuse light scattering properties of both leaves and plant canopy. 1st Int. Coll. Signatures Spectrales D’objets en Teledetection, Avignon 12–16 sept. 1983:55–66.Google Scholar
  14. Vanderbilt VC, Grant L, 1985. Geometric basis for the far red shift in crop canopies, in Int. Geosci and Remote Sens. Symp. (IGARSS’85), Amherst, M.A., Oct. 7–9 1985:874–879.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • F. Baret
    • 1
  • B. Andrieu
    • 2
  • G. Guyot
    • 1
  1. 1.BioclimatologieINRAMontfavetFrance
  2. 2.BioclimatologieINRAGrignonFrance

Personalised recommendations