Advertisement

Remote Sensing of Chlorophyll Fluorescence in Oceanography and in Terrestrial Vegetation: An Introduction

  • Hartmut K. Lichtenthaler

Abstract

The principles of detection of algal cultures (phytoplankton) in oceanography by remote sensing of the passive (sun light) and active (laser-induced) chlorophyll fluorescence are briefly summarized. The new and future possibilities of remote sensing of the physiological state of terrestrial vegetation via the laser-induced chlorophyll fluorescence, which requires other techniques than in oceanography, are pointed out. The limitations of remote sensing of terrestrial vegetation via reflectance signatures and the advantage of the in vivo chlorophyll fluorescence, which comes only from the green plant parts, are contrasted. Finally the successful application of chlorophyll fluorescence as a superior method of ground truth control related to remote sensing is presented.

Key Words

fluorescence ratio F690/F735 laser-induced chlorophyll fluorescence photosynthetic function phytoplankton reflection signatures remote sensing stress detection vitality of plants yellow organic matter (Gelbstoff) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMANN V and DOERFFER R, 1983. Aerial Survey of the temporal and spatial distribution of phytoplankton during FLEX’76. In: North Sea Dynamics, Sündermann and Lenz ed., pp. 517–529, Springer Verlag, Berlin.CrossRefGoogle Scholar
  2. AMANN V, GUENTHER KP and SCHLITTENHARDT P, 1986. Remote sensing experiment Adria 1984: A comparison of passive and laser-induced chlorophyll-fluorescence. In: Proceed. Internat. Geoscience and Remote Sensing Symposium IGARSS Zürich, Vol. III, pp. 1615–1620, ESA Publications Division, Noordwijk.Google Scholar
  3. BERTOLINI G, KOECHLER C, MOYA I and SCHMUCK G, 1988. Consideration on the possibility of in field remote sensing of health state of plants via registration of the chlorophyll fluorescence. In: Applications of Chlorophyll Fluorescence, Lichtenthaler HK ed., pp.278–285, Kluwer Academic Publishers, Dordrecht.Google Scholar
  4. ERNST DEW, 1988. Applications of chlorophyll fluorescence in hydrobiology. In: Applications of Chlorophyll Fluorescence, Lichtenthaler HK ed., pp.243–250 Kluwer Academic Publisher, Dordrecht.Google Scholar
  5. BRISTOW M, NIELSEN D, BUNDY D, and FUSTEK R, 1981. Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attennation. Appl. Opt. 20: 2889–2906.CrossRefPubMedGoogle Scholar
  6. DOERFFER R, 1981. Factor analysis in ocean colour interpretation. In: Oceanography from Space, Gower, J.F.R. ed., pp. 339–345, Plenum Press Corp.CrossRefGoogle Scholar
  7. DOERFFER R, 1988. Remote sensing of sunlight-induced phytoplankton fluorescence. In: Applications of Chlorophyll Fluorescence, Lichtenthaler HK ed., pp.251 – 256, Kluwer Academic Publishers, Dordrecht.Google Scholar
  8. GOWER JFR, Borstad GA and Edel HR, 1987. The fluorescence line imager: first results from passive imaging of chlorophyll fluorescence. In: Proceed. Internat. Geoscience and Remote Sensing Symposium IGARSS Michigan, Vol. II, pp. 1605–1606, University of Michigan, Ann Arbor.Google Scholar
  9. GÜNTHER KP, 1986. Photoinhibition of chlorophyll a fluorescence and its influence to remote sensing techniques. In: Proceed Internat. Geoscience and Remote Sensing Symposium, IGARSS Zürich, Vol. III, pp. 1603–1607,ESA Publications Division, Noordwijk.Google Scholar
  10. HOGE FE, SWIFT RN and JUNGEL JK, 1986. Active-passive airborne ocean colour measurement 2: Applications. Appl. Opt. 25: 48–57.CrossRefPubMedGoogle Scholar
  11. HUSS J, 1984. Luftbildmessung und Fernerkundung in der Forstwirtschaft. H. Widmann Verlag, Karlsruhe.Google Scholar
  12. JADHAV DB, 1987. On the method of detecting phytoplankton pigments by the property of their fluorescence. In: Internat. Geoscience and Remote Sensing Symposium, IGARSS Michigan, Vol. II, pp. 1601–1603, The University of Michigan, Ann Arbor.Google Scholar
  13. KONDRATJEV KY and POZDNYAKOV DV, 1987. Passive and active techniques for remote sensing of phytoplankton of inland water bodies. In: Proceed. Internat. Geoscience and Remote Sensing Symposium, IGARSS Michigan, Vol. II, pp. 1607–1608, University of Michigan, Ann Arbor.Google Scholar
  14. KOCSANYI L, HAITZ M, LICHTENTHALER HK, 1988. Measurement of the laser-induced chlorophyll fluorescence kinetics using a fast acoustooptic device. In: Applications of chlorophyll fluorescence, Lichtenthaler HK ed., pp. 91–93, Kluwer Academic Publishers, Dordrecht.Google Scholar
  15. LICHTENTHALER HK, 1986. Laser-induced chlorophyll fluorescence of living plants. In: Proceed. Internat. Geoscience and Remote Sensing Symposium, IGARSS Zürich, Vol. III, pp. 1571–1579 ESA Publications Division, Noordwijk.Google Scholar
  16. LICHTENTHALER HK, 1988. In vivo chlorophyll fluorescence as a tool for stress detection in plants. In: Applications of Chlorophyll Fluorescence , Lichtenthaler HK ed., pp. 119–132, Kluwer Academic Publishers, Dordrecht.CrossRefGoogle Scholar
  17. LICHTENTHALER HK and BUSCHMANN C, 1984. Photooxidative changes in pigment composition and photosynthetic activity of air-polluted spruce needles (Picea abies L.). In Advances in Photosynthesis Research Vol. IV, Sybesma C ed., pp. 245–250, Martinus Nijhoff Publisher, The Hague.CrossRefGoogle Scholar
  18. LICHTENTHALER HK and BUSCHMANN C, 1987. Reflectance and chlorophyll fluorescence signatures of leaves. In: Proceed. Internat. Geoscience and Remote Sensing Symposium, IGARSS Michigan, Vol. II, pp. 1207–1213, University of Michigan, Ann Arbor.Google Scholar
  19. LICHTENTHALER HK and BUSCHMANN C, 1988. Changes in the chlorophyll fluorescence spectra during the Kautsky induction kinetics. In: Proceed. 4th Internat. Colloq. Spectral Signatures of Objects in Remote Sensing, Aussois, Vol. I, pp. 245–250, ESA Publications Division, Noordwijk.Google Scholar
  20. LICHTENTHALER HK and RINDERLE U, 1988a. The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry 19, Suppl. I, S 29 — S 85.Google Scholar
  21. LICHTENTHALER HK and RINDERLE U, 1988b. Chlorophyll fluorescence spectra of leaves as induced by blue light and red laser light. In: Proceed. 4th Internat. Colloq. Spectral Signatures of Objects in Remote Sensing, Aussois, Vol .I, pp. 251–254, ESA Publications Division, Noordwijk.Google Scholar
  22. LICHTENTHALER HK, SCHMUCK G, DOLL M & BUSCHMANN C, 1985. Untersuchungen über die Funktionsfähigkeit des Photosyntheseapparates bei Nadeln gesunder und geschädigter Koniferen. In: PEF-Bericht Kfk-PEF 2, PEF-Projektleitung ed, pp. 81–105, Kernforschungszentrum Karlsruhe.Google Scholar
  23. LICHTENTHALER HK, SCHMUCK G, NAGEL E & BUSCHMANN C, 1986. Direct and indirect damages of photosynthesis as one of the main causes of the large scale forest die-back. In: Premier colloque scientifique des universités du rhin superieur: “Recherche sur l’environnement dans la region”, Rentz et al., eds. pp. 261–280, Université Louis Pasteur et Conseil de l’Europe, Strasbourg.Google Scholar
  24. LICHTENTHALER HK, RINDERLE U, KRITIKOS G and ROCK B, 1987. Classification of damaged spruce stands in the Northern Black Forest by airborne reflectance and terrestrial chlorophyll fluorescence measurements. In: 2nd DFVLR Seminar Untersuchung und Kartierung von Waldschäden mit Methoden der Fernerkundung, pp. 238–252, DFVLR Oberpfaffenhofen/München.Google Scholar
  25. MASKE H and HAARDT H, 1988. Quantum yield of in situ fluorescence of phytoplankton in Kiel Bay under daylight, comparison with primary production. In: Applications of Chlorophyll Fluorescence, Lichtenthaler HK ed., pp.257–266, Kluwer Academic Publishers, Dordrecht.Google Scholar
  26. NAGEL EM, BUSCHMANN C and LICHTENTHALER HK, 1987. Photoacoustic spectra of needles as an indicator for the activity of the photosynthetic apparatus of healthy and damaged conifers. Physiol. Plantarum 70: 427–437.CrossRefGoogle Scholar
  27. NEVILLE RA and GOWER JFR, 1977. Passive remote sensing of phytoplankton via chlorophyll a fluorescence. J. Geophys. Res. 82: 3487–3493.CrossRefGoogle Scholar
  28. RINDERLE U and LICHTENTHALER HK, 1988. The chlorophyll fluorescence ratio F690/F735 as a possible stress indicator. In: Applications of Chlorophyll Fluorescence, Lichtenthaler HK ed. pp. 176–183, Kluwer Academic Publishers, Dordrecht.Google Scholar
  29. RINDERLE U, HAITZ M, LICHTENTHALER HK, KÄHNY DH, SHIZ and WIESBECK W. Correlation of Radar reflectivity and chlorophyll fluorescence of forest trees. In: Proceed. Geoscience and Remote Sensing Symposium, IGARSS Edinburgh, ESA Publications Division, Noordwijk, (in press).Google Scholar
  30. ROCK BN, HOSHIZAKI T, LICHTENTHALER HK & SCHMUCK G, 1986a. Codmparison of in situ spectral measurements of forest decline symptoms in Vermont (USA) and the Schwarzwald (FRG). In: Proceed. Internat. Geoscience and Remote Sensing Symposium. IGARSS Zürich, Vol. III, pp. 1667–1672, ESA Publications Division, Noordwijk.Google Scholar
  31. ROCK BN, VOGELMANN JE, WILLIAMS DL, Vogelmann AF and Hoshizaki T, 1986b. Remote detection of forest damage. Bioscience 36: 439–445.CrossRefGoogle Scholar
  32. ROSEMA A, CECCHI G, PANTANI L, RADICATTI B, ROMULI M, MAZZINGHI P, van KOOTEN O and KLIFFEN C, 1988. Results of the “LIFT” project: Air pollution effects on the fluorescence of Douglas fir and Poplar. In: Applications of Chlorophyll Fluorescence, Lichtenthaler HK ed., pp. 286–296, Kluwer Academic Publishers, Dordrecht.Google Scholar
  33. SCHMUCK G & LICHTENTHALER HK, 1986. Application of laser-induced chlorophyll fluorescence in the forest decline research. In: Proceed. Internat. Geoscience and Remote Sensing Symposium, IGARSS Zürich, Vol. III, pp. 1587–1590, ESA Publications Division, Noordwijk.Google Scholar
  34. SCHMUCK G, LICHTENTHALER HK, KRITIKOS G, AMANN V and ROCK B, 1987. Comparison of terrestrial and airborne reflection measurements of forest trees. In: Proceed. Internat. Geoscience and Remote Sensing Symposium IGARSS Michigan, Vol. I, pp. 1201–1206, University of Michigan, Ann Arbor.Google Scholar
  35. SHU S and CHEN J, 1987. A new method to measure chlorophyll concentration in different depth water using spectroradiometer. In: Proceed. Internat. Geoscience and Remote Sensing Symposium IGARSS Michigan, Vol. II, pp. 1589–1594, The University of Michigan, Ann Arbor.Google Scholar
  36. SCHNECKENBURGER H and FRENZ M, 1986. Time-resolved fluorescence of conifers exposed to environmental pollution. Radiat. Environm. Biophysics 25: 289–295.CrossRefGoogle Scholar
  37. SPITZER D and DIRKS RWJ, 1985. Contamination of the reflectance of natural waters by solar-induced fluorescence of dissolved organic matter. Applied Optics 24: 444–445.CrossRefPubMedGoogle Scholar
  38. ZIMMERMANN R and GüNTHER KP, 1986. Laser-induced chlorophyll a fluorescence of terrestrial plants. In: Proceed. Internat. Geoscience Remote Sensing Symposium, IGARSS Zürich, Vol. III, pp. 1609–1613, ESA Publications Division, Noordwijk.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Hartmut K. Lichtenthaler
    • 1
  1. 1.Botanisches Institut II (Plant Physiology and Plant Biochemistry)University of KarlsruheKarlsruhe 1Germany

Personalised recommendations