The Chlorophyll Fluorescence Ratio F690/F735 as a Possible Stress Indicator

  • Ursula Rinderle
  • Hartmut K. Lichtenthaler


The chlorophyll fluorescence emission spectra, as excited by blue and red light including laser light, were determined depending on the chlorophyll content and the photosynthetic activity of leaves and needles. The fluorescence-emission spectra exhibit two maxima or a shoulder in the 690 nm and the 735 nm region. The corresponding fluorescence ratio F690/F735 for green leaves is higher (values of 0.8 to 1.1) when excited with blue light (range 400 to 500 nm) than excited with light in the yellow to red wavelength region (525 to 633 nm), which only yields values for F690/F735 of 0.5 to 0.7. The values for the ratio F690/F735 are drastically increased with decreasing chlorophyll content of leaves and to a lower degree also by a decline of photosynthetic activity (e.g. herbicide treatment, needles of damaged forest trees) no matter whether the fluorescence is excited by red or blue light. Since stress induces a lower chlorophyll content as well as lower rates of photosynthesis, the ratio F690/F735 can be taken as indicator of stress to plants. The application of the ratio F690/F735 in detecting stress to terrestrial vegetation via remote sensing of the chlorophyll fluorescence is discussed.

Key Words

Chlorophyll fluorescence emission spectra fluorescence ratio F690/F735 laser-induced fluorescence Rfd-values remote sensing of vegetation stress detection in plants vitality index 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Krause GH and Weis E, 1984. Chlorophyll fluorescence as a tool in plant physiology. Photosynth. Res. 5: 139–157.CrossRefPubMedGoogle Scholar
  2. Lichtenthaler HK, 1986: Laser-induced chlorophyll fluorescence of living plants. In: Proc. Internat. Geoscience and Remote Sensing Symposium IGARSS Zürich, Vol. III, pp. 1571–1579, ESA Publications Division, Noordwijk.Google Scholar
  3. Lichtenthaler HK, 1987a. Chlorophyll fluorescence signatures of leaves during the autumnal chlorophyll breakdown. J. Plant Physiol. 131: 101–110.CrossRefGoogle Scholar
  4. Lichtenthaler HK, 1987b. Chlorophylls and carotenoids: Pigments of photo-synthetic biomembranes. Methods Enzymol. 148: 350–382.CrossRefGoogle Scholar
  5. Lichtenthaler HK and Pfister K, 1978. Praktikum der Photosynthese, Quelle & Meyer Verlag, Heidelberg.Google Scholar
  6. Lichtenthaler HK, Buschmann C, Doll M, Fietz H-J, Bach T, Kozel U, Meier D and Rahmsdorf U, 1981. Photosynthetic activity, chloroplast ultrastructure and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynth. Res. 2: 115–141.CrossRefPubMedGoogle Scholar
  7. Lichtenthaler HK, Buschmann C, Rinderle U and Schmuck G, 1986. Application of chlorophyll fluorescence in ecophysiology. Radiation and Environmental Biophysics 25: 297–308.CrossRefPubMedGoogle Scholar
  8. Lichtenthaler HK and Rinderle U, 1988. Role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry 19, Suppl. I: S29–S85.CrossRefGoogle Scholar
  9. Strasser R, Schwarz B and Bucher J, 1987. Simultane Messung der Chlorophyll Fluoreszenz-Kinetik bei verschiedenen Wellenlängen als rasches Verfahren zur Frühdiagnose von Immissionsbelastungen an Waldbäumen. Ozoneinwirkung auf Buchen und Pappeln. Europ. J. Forest Pathology 17: 149–157.CrossRefGoogle Scholar
  10. Zimmermann R and Günther KP, 1986. Laser-induced chlorophyll a fluorescence of terrestrial plants, In: Proc. Internat Geoscience and Remote Sensing Symposium IGARSS Zürich, Vol. III, pp. 1609–1613, ESA Publications Division, Noordwijk.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • Ursula Rinderle
    • 1
  • Hartmut K. Lichtenthaler
    • 1
  1. 1.Botanisches Institut II (Plant Physiology and Plant Biochemistry)University of KarlsruheKarlsruhe 1Germany

Personalised recommendations