Advertisement

The continuing story of 5-hydroxytryptamine receptors: a 5-HT3 receptor modulates dopamine release from rat striatal slice

  • Patrizio Blandina
  • Joseph Goldfarb
  • Jack Peter Green
Chapter
Part of the Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine book series (DICM, volume 106)

Abstract

To the large number of 5-HT receptors that have been catalogued [1–4] can now be added the 5-HT1D receptor, first described as a binding site [5] and recently shown to be negatively coupled to adenylyl cyclase in the calf substantia nigra [6]. Yet additional 5-HT receptors exist, not only in mammalian smooth muscles and other peripheral tissues [1, 3] but in brain as well. For example, the hippocampus has binding sites (and probably the homologous receptors) for all known 5-HT receptors [5, 7–10]. But some 5-HT-induced excitatory responses in the hippocampus cannot be attributed to any of these receptors. These include a slow depolarization of pyramidal cells which has been attributed to a decrease in a K+ current [11, 12]; a decrease in the calcium-dependent K+ current responsible for the slow after-spike hyperpolarization in pyramidal cells [11, 12]; and a transient increase in population spike amplitude [13].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification, and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–576.PubMedCrossRefGoogle Scholar
  2. 2.
    Arvidsson L–E, Hacksell U, Glennon RA (1986): Recent advances in central 5-hydroxytryptamine receptor agonists and antagonists. Prog Drug Res 30: 365–471.PubMedGoogle Scholar
  3. 3.
    Green JP, Maayani S (1987): Nomenclature, classification, and notation of receptors: 5-hydroxytryptamine receptors and binding sites as examples pp. 237–267 in: Black JW. Jenkinson DH Gerskowitch VP (eds), Perspectives on receptor classification, Liss: New York.Google Scholar
  4. 4.
    Peroutka SJ (1988): 5-Hydroxytryptamine receptor subtypes Ann Rev Neurosci 11: 45–60.PubMedCrossRefGoogle Scholar
  5. 5.
    Heuring RE, Peroutka SJ (1987): Characterization of a novel 3H-5-HT binding site subtype in bovine brain membrance. J Neurosci 7: 894–903.PubMedGoogle Scholar
  6. 6.
    Schoeffter P, Waeber C, Palacios JM, Hoyer D (1988): The 5-hydroxytryptamine 5-HT1D receptor subtype is negatively coupled to adenylate cyclase in calf substantia nigra Naunyn–Schmiedeberg’s Arch Pharmacol 337: 602–608.Google Scholar
  7. 7.
    Pazos A, Cortes I, Palacios JM (1985): Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin–2 receptors. Brain Res 346: 231–249.PubMedCrossRefGoogle Scholar
  8. 8.
    Pazos A, Palacios JM (1985): Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-1 receptors. Brain Res 346: 205–230.PubMedCrossRefGoogle Scholar
  9. 9.
    Kilpatrick GJ, Jones BJ, Tyers MB (1987): The identification and distribution of the 5-HT3 receptors in rat brain using radioligand binding. Nature 330: 746–748.PubMedCrossRefGoogle Scholar
  10. 10.
    Herrick-Davis K, Titeler M (1988): Detection and characterization of the serotonin 5-HT1D receptor in rat and human brain. J Neurochem 50: 1624–1631.PubMedCrossRefGoogle Scholar
  11. 11.
    Colino A, Halliwell JV (1987): Differential modulation of three separate K+-conductances in hippocampal CA1 neurons by serotonin. Nature 328: 73–77.PubMedCrossRefGoogle Scholar
  12. 12.
    Andrade R, Nicoll RA (1987): Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol (Lond.) 394: 99–124.Google Scholar
  13. 13.
    Beck SG, Clarke WP, Goldfarb J (1985): Spiperone differentiates multiple 5-hydroxy-tryptamine responses in rat hippocampal slices in vitro. Europ J Pharmacol 116: 195– 197.CrossRefGoogle Scholar
  14. 14.
    Shenker A, Maayani S, Weinstein H, Green JP (1985): Two 5-HT receptors linked to adenylate cyclase in guinea pig hippocampus are discriminated by 5-carboxamidotrypta-mine and spiperone. Eur J Pharmacol 109: 427–429.PubMedCrossRefGoogle Scholar
  15. 15.
    Shenker A, Maayani S, Weinstein H, Green, JP (1987): Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol Pharmacol 31: 357–367.PubMedGoogle Scholar
  16. 16.
    Bonner TI, Buckley NJ, Young AC, Brann MR (1987): Identification of a family of muscarinic acetylcholine receptor genes. Science 237: 527–532.PubMedCrossRefGoogle Scholar
  17. 17.
    Green JP (1987): Polypharmic antagonists—a class of their own. Trends Pharmacol Sci 8: 377–379.CrossRefGoogle Scholar
  18. 18.
    De Vivo M, Maayani S (1986): Characterization of the 5-hydroxytryptamine1A receptor mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther 238: 248–253.PubMedGoogle Scholar
  19. 19.
    Abramson SN, Molinoff PB (1985): Properties of beta-adrenergic receptors of cultured mammalian cells: interaction of receptors with a guanine nucleotide–binding protein in membranes prepared from L6 myoblast and from wild–type and cyc–S49 lymphoma calls. J Biol Chem 260: 14580–14588.PubMedGoogle Scholar
  20. 20.
    Asano T, Katada T, Gilman AG, Ross, EM (1984): Activation of the inhibitory GTP– binding protein of adenylate cyclase, Gi by beta–adrenergic receptors in reconstituted phospholipid vesicles, J Biol Chem 259: 9351–9354.PubMedGoogle Scholar
  21. 21.
    Ueda H, Harada H, Nozaki M, Katada T, Ui M, Satoh M, Takagi H (1988): Reconstitution of rat brain μ opioid receptors with purified guanine nucleotide-binding regulatory proteins, G iand Go. Proc Natl Acad Sci USA 85: 7013–7017.PubMedCrossRefGoogle Scholar
  22. 22.
    Cooper DMF, Londos C, Rodbell M (1980): Adenosine receptor-mediated inhibition of rat cerebrat cortical adenylate cyclase by a GTP-dependent process. Mol Pharmacol 18: 598–601.PubMedGoogle Scholar
  23. 23.
    Jacobs KH, Aktories K, Minuth M, Schultz G (1985): Inhibition of adenylate cyclase vol. 19 pp. 137–150, in: Cooper DMF, Seamon KB (eds), Advances in cyclic nucleotide and protein phosphorylation research , Raven Press: New York.Google Scholar
  24. 24.
    Andrade R, Malenka RC, Nicoll RA (1986): A G protein couples serotonin and GABA-B receptors to the same channels in hippocampus. Science 234: 1261–1265.PubMedCrossRefGoogle Scholar
  25. 25.
    Clarke WP, DeVivo M, Beck SG, Maayani S, Goldfarb J (1987): Serotonin decreases population spike amplitude in hippocampal cells through a pertussis toxin substrate. Brain Res 410: 357–361.PubMedCrossRefGoogle Scholar
  26. 26.
    Gilman AG (1987): G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56: 615–649.PubMedCrossRefGoogle Scholar
  27. 27.
    Iyengar R, Birnbaumer L (1987): Signal transduction by G-proteins. ISI Atlas of Science: Pharmacol 213–221.Google Scholar
  28. 28.
    Glowinski J, Cheramy A, Romo R, Barbeito L (1988): Presynaptic regulation of dopaminergic transmission in the striatum. Cell Mol Neurobiol 8: 7–17.PubMedCrossRefGoogle Scholar
  29. 29.
    Costall B, Naylor RJ (1974): Stereotyped and circling behavior induced by dopaminergic agonists after lesions of the midbrain raphe nuclei. Eur J Pharmacol 29: 206–212.PubMedCrossRefGoogle Scholar
  30. 30.
    Samanin R, Quattrone A, Consolo S, Ladinsky H, Algeri S (1978): Biochemical and pharmacological evidence for the interaction of serotonin with other aminergic systems in the brain pp. 383–399 in: Garattini S, Pujol JF, Samanin R (eds), Interactions between putative neurotransmitters in the brain , Raven Press: New York.Google Scholar
  31. 31.
    Ennis C, Kemp JD, Cox B (1981): Characterization of inhibitory 5-hydroxytryptamine receptors that modulate dopamine release in the striatum. J Neurochem 36: 1515–1520.PubMedCrossRefGoogle Scholar
  32. 32.
    Muramutsu M, Tamahi-Ohashi J, Usuki C, Araki H, Chaky S, Aihara H (1988): 5-HT2 antagonists and minaprine block the 5-HT-induced inhibition of dopamine release from rat brain striatal slices. Eur J Pharmacol 153: 89–95.PubMedCrossRefGoogle Scholar
  33. 33.
    Leysen JE, Eens A, Gommeren W, van Gompel P, Wynants J, Jansen PAJ (1988): Identification of nonserotonergic 3H-ketanserin binding sites associated with nerve terminals in rat brain and with platelets; relation with release of biogenic amine metabolites induced by ketanserin– and terabenazine-like drugs. J Pharmacol Exp Ther 244: 310–321.PubMedGoogle Scholar
  34. 34.
    Costall B, Domeney AM, Naylor RJ, Tyers MB (1987): Effects of the 5-HT3 receptor antagonist, GR38032F, on raised dopaminergic activity in the mesolimbic system of the rat and marmoset brain. Br J Pharmacol 92: 881–894.PubMedCrossRefGoogle Scholar
  35. 35.
    Miller JJ, Richardson TL, Fibiger HC, Mc Lennan H (1975): Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate putamen in the rat brain. Brain Res 97: 133–138.PubMedCrossRefGoogle Scholar
  36. 36.
    Davies J, Tongroach P. (1978): Neuropharmacological studies on the nigro–striatal and raphe–striatal system in the rat. Eur J Pharmacol 51: 91–100.PubMedCrossRefGoogle Scholar
  37. 37.
    Bevan P, Bradshaw CM, Szabaldi E (1975): Effects of desipramine on neuronal responses to dopamine, noradrenaline, 5-hydroxytryptamine and acetylcholine in the caudate nucleus of the rat. Br J Pharmacol 54: 285–293.PubMedCrossRefGoogle Scholar
  38. 38.
    De Simoni MG, Dal Toso G, Fodritto F, Sokola A, Algeri S (1987): Modulation of striatal dopamine metabolism by the activity of dorsal raphe serotonergic afferents. Brain Res 411: 81–88.PubMedCrossRefGoogle Scholar
  39. 39.
    Besson MJ, Cheramy A, Feltz P, Glowinski J (1969): Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc Nat Acad Sci U.S.A. 62: 741–748.CrossRefGoogle Scholar
  40. 40.
    de Belleroche J, Bradford H (1980): Presynaptic control of the synthesis and release of dopamine from striatal synaptosomes: a comparison between the effects of 5-hydroxytryptamine, acetylcholine and glutamate. J Neurochem 35: 1227–1234.PubMedCrossRefGoogle Scholar
  41. 41.
    Nurse B, Russel VA, Taljaard JJF (1988): Characterization of the effects of serotonin on the release of 3H-Dopamine from rat nucleus accumbens and striatal slices. Neurochem Res 13: 403–407.PubMedCrossRefGoogle Scholar
  42. 42.
    Sharp T, Zetterstrom T, Christmanson L, Ungerstedt U (1986): p-Chloroamphetamine releases both serotonin and dopamine into brain dialysates in vivo. Neurosci Lett 72: 320–324.CrossRefGoogle Scholar
  43. 43.
    Waldmeier PC, Delini-Stula AA (1979): Serotonin-dopamine interactions in the nigrostri-atal system. Eur J Pharmacol 55: 363–373.PubMedCrossRefGoogle Scholar
  44. 44.
    Hagan RM, Butler A, Hill JM, Jordan CC, Ireland SJ, Tyers MB (1987): Effect of the 5-HT3 receptor antagonist, GR38032F, on responses to injection of a neurokinin agonist into the ventral tegmental area of the rat brain. Eur J Pharmacol 138: 303–305.PubMedCrossRefGoogle Scholar
  45. 45.
    Hamon M, Fattaccini C-M, Adrien J, Gallissot M-C, Martin P, Gozlan H (1988): Alteration of central serotonin and dopamine turnover in rats treated with ipsapirone and other 5-hydroxytryptamine]A agonists with potential anxiolytic properties. J Pharmacol Exp Ther 246: 745–752.PubMedGoogle Scholar
  46. 46.
    Agren H, Mefford IN, Rudorfer MV, Linnoila M, Potter WZ (1986): Interacting neurotransmitter systems. A non-experimental approach to the 5HIAA-HVA correlation in human CSF. J Phychiat Res 20: 175–193.CrossRefGoogle Scholar
  47. 47.
    Richardson BP, Buchheit KH (1988): The pharmacology, distribution and function of 5-HT3 receptors pp. 465–506, in: Osborne NN, Hamon M (eds), Neuronal Serotonin, John Wiley & Sons New York.Google Scholar
  48. 48.
    Hoyer D, Neijt HC (1987): Identification of serotonin 5-HT3 recognition sites by radioligand binding in NG 108–15 neuroblastoma-glioma cells. Eur J Pharmacol 143: 291–292.PubMedCrossRefGoogle Scholar
  49. 49.
    Barnes NM, Costall B, Naylor RJ (1988): [3H]-Zacopride identifies 5-HT3 binding sites in rat entorhinal cortex. Br J Pharmacol 94: 391 P.Google Scholar
  50. 50.
    Peroutka SJ, Hamik A (1988): [3H]Quipazine labels 5-HT3 recognition sites in rat cortical membranes. Eur J Pharmacol 148:297–299.PubMedCrossRefGoogle Scholar
  51. 51.
    Waeber C, Dixon K, Hoyer D, Palacios JM (1988): Localisation by autoradiography of neuronal 5-HT3 receptors in the mouse CNS. Eur J Pharmacol 151: 351–352.PubMedCrossRefGoogle Scholar
  52. 52.
    Watling KJ (1988): Radioligand binding studies identify 5-HT3 recognition sites in neuroblastoma cell lines and mammalian CNS. Trends Pharmacol Sci 9: 227–229.PubMedCrossRefGoogle Scholar
  53. 53.
    Misu Y, Goshima Y, Ueda H, Kubo T (1985): Presynaptic inhibitory dopamine receptors on noradrenergic nerve terminals: analysis of biphasic actions of dopamine and apomorphine on the release of endogenous norepinephrine in rat hypothalamic slices. J Pharmacol Exp Ther 235: 771–777.PubMedGoogle Scholar
  54. 54.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951): Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–273.PubMedGoogle Scholar
  55. 55.
    Richardson BP, Engel G, Donatsch P, Stadler PA (1985): Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature 316: 126–131.PubMedCrossRefGoogle Scholar
  56. 56.
    Andrews PLR, Rapeport WG, Sanger GJ (1988): Neuropharmacology of emesis induced by anti-cancer therapy. Trends Pharmacol Sci 9: 334–341.PubMedCrossRefGoogle Scholar
  57. 57.
    Jones BJ, Costall B, Domeney AM, Kelly ME, Naylor RJ, Oakley NR, Tyers MB (1988): The potential anxiolytic activity of GR38032F, a 5-HT3-receptor antagonist. Br J Pharmacol 93: 985–993.PubMedCrossRefGoogle Scholar
  58. 58.
    Carboni E, Acquas E, Leone P, Perezzani L, Di Chiara G (1988): 5-HT3 receptor antagonists block morphine- and nicotine-induced place-preference conditioning. Eur J Pharmacol 151,159–160.PubMedCrossRefGoogle Scholar
  59. 59.
    Sellers EM, Kaplan HL, Lawrin MO, Somer G, Naranjo CA, Frecker RC (1988): The 5-HT3 antagonist GR38032F decreases alcohol consumption in rats. Soc Neurosci Abstr 14: 41.Google Scholar
  60. 60.
    Imperato A, Angelucci L (1988): 5-HT3 receptors control dopamine release in the limbic system of freely-moving rats. Soc Neurosci Abstr 14: 611.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • Patrizio Blandina
  • Joseph Goldfarb
  • Jack Peter Green

There are no affiliations available

Personalised recommendations