Regional differences in the transduction mechanisms of 5-hydroxytryptamine receptors in the mammalian brain

  • M. Hamon
  • M. B. Emerit
  • S. el Mestikawy
  • M. C. Gallissot
  • H. Gozlan
Part of the Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine book series (DICM, volume 106)


During the last ten years, binding studies with selective radioligands have contributed to the present knowledge of central 5-hydroxytryptamine (5-HT) receptors, leading to the identification of membrane-bound specific sites with pharmacological properties expected for such receptors. Three main classes of 5-HT binding sites designated 5-HT1,5-HT2 and 5-HT3 have been identified so far [1], Apparently a single homogeneous population of sites corresponds to each of the two latter classes (at least in the CNS), but clearcut evidence of heterogeneity of 5-HT1 sites has been reported [2]. Thus it could be established that 5-HT1 sites are a mixture of 4 distinct classes of high affinity sites for [3H]5-HT called 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D, whose proportions are extremely variable from one brain area to another, and also from one species to another.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology25: 563–575.PubMedCrossRefGoogle Scholar
  2. 2.
    Pedigo NW, Yamamura HI, Nelson DL (1981): Discrimination of multiple [3H]5- hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J. Neurochem36: 220–226.PubMedCrossRefGoogle Scholar
  3. 3.
    Von Hungen K, Roberts S, Hill DF (1975): Serotonin-sensitive adenylate cyclase activity in immature rat brain. Brain Research84: 257–267.CrossRefGoogle Scholar
  4. 4.
    Roth BL, Chuang DM (1987): Multiple mechanisms of serotonergic signal transduction. LifeSci41: 1051–1064.PubMedCrossRefGoogle Scholar
  5. 5.
    Hamon M, Gozlan H, EI Mestikawy S, Emerit MB, Cossery JM, Lutz O. (1988): Biochemical properties of central serotonin receptors, pp. 393–422 in: Osborne NN, Hamon M (eds), Neuronal Serotonin. Chichester: John Wiley & Sons Ltd.Google Scholar
  6. 6.
    Neer EJ, Clapham DE (1988): Roles of G protein subunits in transmembrane signalling. Nature (Lond)333: 129–134.CrossRefGoogle Scholar
  7. 7.
    Peroutka SJ, Lebovitz RM, Snyder SH (1979): Serotonin receptor binding sites affected differentially by guanine nucleotides. Mol Pharmacol16: 700–708.PubMedGoogle Scholar
  8. 8.
    Hamon M, Nelson DL, Herbet A, Glowinski J (1980): Multiple receptors for serotonin in the rat brain, pp. 223–233 in: Pepeu G, Kuhar MJ, Enna SJ (eds), Receptors for Neurotransmitters and Peptide Hormones. N.Y.: Raven Press.Google Scholar
  9. 9.
    Hamon M, Goetz C, Gozlan H (1983): Reciprocal modulations of central 5-HT receptors by GTP and cations, pp. 349–359 in: Mandel P, de Feudis FV (eds), CNS receptors–from molecular pharmacology to behavior. N.Y.: Raven Press.Google Scholar
  10. 10.
    Kendall DA, Nahorski SR (1983): Temperature-dependent 5-hydroxytryptamine (5-HT)-sensitive [3H] spiperone binding to rat cortical membranes: regulation by guanine nucleotide and antidepressant treatment. J Pharmacol Exp Ther227: 429–434.PubMedGoogle Scholar
  11. 11.
    Battaglia G, Shannon M, Titeler M (1984): Guanyl nucleotide and divalent cation regulation of cortical S2 serotonin receptors. J Neurochem43: 1213–1219.PubMedCrossRefGoogle Scholar
  12. 12.
    Shearman MS, Strange PG (1988): Guanine nucleotide effects on agonist binding to serotonin 5-HT2 receptors in rat frontal cortex. Biochem Pharmacol37: 3097–3102.PubMedCrossRefGoogle Scholar
  13. 13.
    Gozlan H, El Mestikawy S, Pichat L, Glowinski J, Hamon M (1983): Identification of presynaptic serotonin autoreceptors using a new ligand: 3H-PAT. Nature (Lond)305: 140–142.CrossRefGoogle Scholar
  14. 14.
    Hall MD, Gozlan H, Emerit MB, El Mestikawy S, Pichat L, Hamon M (1986): Differentiation of pre- and post-synaptic high affinity serotonin receptor binding sites using physico-chemical parameters and modifying agents. Neurochem Res11: 891–912.PubMedCrossRefGoogle Scholar
  15. 15.
    Heuring RE, Peroutka SJ (1987): Characterization of a novel 3H-5-hydroxytryptamine binding site subtype in bovine brain membranes. J Neurosci7: 894–903.PubMedGoogle Scholar
  16. 16.
    Palacios JM, Markstein R, Pazos A (1986): Serotonin-lC sites in the choroid plexus are not linked in a stimulatory or inhibitory way to adenylate cyclase. Brain Research380: 151–154.PubMedCrossRefGoogle Scholar
  17. 17.
    Julius D, Mac Dermott AB, Axel R, Jessell TM (1988): Molecular characterization of a functional cDNA encoding the serotonin 1C receptor. Science241: 558–564.PubMedCrossRefGoogle Scholar
  18. 18.
    Kobilka BK, Frielle T, Collins S, Yang-Feng T, Kobilka TS, Francke U, Lefkowitz RJ, Caron MG (1987): An intronless gene encoding a potential member of the family of receptors coupled to guanine nucleotide regulatory proteins. Nature (Lond)329: 75–79.CrossRefGoogle Scholar
  19. 19.
    Kilpatrick GJ, Jones BJ, Tyers MB (1987): Identification and distribution of 5-HT3 receptors in rat brain using radioligand binding. Nature (Lond)330: 746–748.CrossRefGoogle Scholar
  20. 20.
    Tsang D, Lai S (1977): Effect of monoamine receptor agonists and antagonists on cyclic AMP accumulation in human cerebral cortex slices. Can. J. Physiol Pharmacol 55:1263–1269.PubMedCrossRefGoogle Scholar
  21. 21.
    Ahn HS, Makman MH (1978): Stimulation of adenylate cyclase activity in monkey anterior limbic cortex by serotonin. Brain Research153: 636–640.PubMedCrossRefGoogle Scholar
  22. 22.
    Enjalbert A, Bourgoin S, Hamon M, Adrien J, Bockaert J (1978): Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system. I. Development and distribution of serotonin- and dopamine-sensitive adenylate cyclases in rat and guinea pig brain. Mol Pharmacol 14:2–10.PubMedGoogle Scholar
  23. 23.
    Enjalbert A, Hamon M, Bourgoin S, Bockaert J (1978): Postsynaptic serotonin-sensitive adenylate cyclase in the central nervous system. II. Comparison with dopamine- and isoproterenol-sensitive adenylate cyclases in rat brain. Mol Pharmacol14: 11–23.PubMedGoogle Scholar
  24. 24.
    Euvrard C, Boissier JR (1980): Biochemical assessment of the central 5-HT agonist activity of RU 24969 (a piperidinyl indole). Europ J Pharmacol63: 65–72.CrossRefGoogle Scholar
  25. 25.
    Middlemiss DN, Blakeborough L, Leather SR (1977): Direct evidence for an interaction of ß-adrenergic blockers with the 5-HT receptor. Nature (Lond) 267: 289–290.Google Scholar
  26. 26.
    Barbaccia ML, Brunello N, Chuang DM, Costa E (1983): Serotonin-elicited amplification of adenylate cyclase activity in hippocampal membranes from adult rat. J Neurochem40: 1671–1679.PubMedCrossRefGoogle Scholar
  27. 27.
    Markstein R, Hoyer D, Engel G (1986): 5-HT1A-receptors mediate stimulation of adenylate cyclase in rat hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol 333: 335–341.CrossRefGoogle Scholar
  28. 28.
    Dumuis A, Bouhelal R, Sebben M, Bockaert J (1988): A 5-HT receptor in the central nervous system, positively coupled with adenylate cyclase, is antagonized by ICS 205 930. Europ J Pharmacol146: 187–188.CrossRefGoogle Scholar
  29. 29.
    Hamon M, Bourgoin S (1982): Characteristics of 5-HT metabolism and function in the developing brain, pp. 197–220 in: Osborne NN (ed), Biology of serotonergic transmission. Chichester: John Wiley & Sons Ltd.Google Scholar
  30. 30.
    Shenker A, Maayani S, Weinstein H, Green JP (1987): Pharmacological characterization of two 5-hydroxytryptamine receptors coupled to adenylate cyclase in guinea pig hippocampal membranes. Mol Pharmacol31: 357–367.PubMedGoogle Scholar
  31. 31.
    De Vivo M, Maayani S (1986): Characterization of the 5-hydroxytryptamine1A receptor- mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther238: 248–253.PubMedGoogle Scholar
  32. 32.
    Vergé D, Daval G, Marcinkiewicz M, Patey A, El Mestikawy S, Gozlan H, Hamon M (1986): Quantitative autoradiography of multiple 5-HT1 receptor subtypes in the brain of control or 5, 7-dihydroxytryptamine treated rats. J Neurosci6: 3474–3482.PubMedGoogle Scholar
  33. 33.
    Daval G, Vergé, D, Becerril A, Gozlan H, Spampinato U, Hamon M (1987): Transient expression of 5-HT1A receptor binding sites in some areas of the rat CNS during postnatal development. Int J Devi Neurosci5: 171–180.CrossRefGoogle Scholar
  34. 34.
    Bockaert J, Dumuis A, Bouhelal R, Sebben M, Cory RN (1987): Piperazine derivatives including the putative anxiolytic drugs, buspirone and ipsapirone, are agonists at 5-HT1A receptors negatively coupled with adenylate cyclase in hippocampal neurons. Naunyn-Schmiedeberg’s Arch Pharmacol335: 588–592.CrossRefGoogle Scholar
  35. 35.
    Hamon M (1987): Second messenger systems linked to different serotonin (5-HT) receptors, pp. 281–284 in: Rand MJ, Raper C (eds), Pharmacology. Elsevier Sci. Publ.Google Scholar
  36. 36.
    Hamon M, Fattaccini CM, Adrien J, Gallissot MC, Martin P, Gozlan H (1988): Alterations of central serotonin and dopamine turnover in rats treated with ipsapirone and other 5-HT1A agonists with potential anxiolytic properties. J Pharmacol Exp Ther246: 745–752.PubMedGoogle Scholar
  37. 37.
    Bouhelal R, Smounya L, Bockaert J (1988): 5-HT1B receptors are negatively coupled with adenylate cyclase in rat substantia nigra. Europ J Pharmacol 151:189–196.CrossRefGoogle Scholar
  38. 38.
    Engel G, Göthert M, Hoyer D, Schlicker E, Hillenbrand, K (1986): Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol332: 1–7.CrossRefGoogle Scholar
  39. 39.
    Schlicker E, Fink K, Classen K, Göthert M (1987): Facilitation of serotonin (5-HT) release in the rat brain cortex by cAMP and probable inhibition of adenylate cyclase in 5-HT nerve terminals by presynaptic α2-adrenoceptors. Naunyn-Schmiedeberg’s Arch Pharmacol336: 251–256.CrossRefGoogle Scholar
  40. 40.
    Hoyer D, Schoeffter P (1988): 5-HT1D receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in calf substantia nigra. Europ J Pharmacol 147:145–147.CrossRefGoogle Scholar
  41. 41.
    Hamblin MW, Ariani K, Adriaenssens PI, Ciaranello RD (1987): [3H]-Dihydroergotamine as a high affinity, slowly dissociating radioligand for 5-HT1B binding sites in rat brain membranes: evidence for guanine nucleotide regulation of agonist affinity states. J Pharmacol Exp Ther 243:989–1001.PubMedGoogle Scholar
  42. 42.
    Conn PJ, Sanders-Bush E, Hoffman BJ, Hartig PR (1986): A unique serotonin receptor in choroid plexus is linked to phosphatidyl-inositol turnover. Proc Natl Acad Sci USA83: 4086–4088.PubMedCrossRefGoogle Scholar
  43. 43.
    Conn PJ, Sanders-Bush E (1986): Agonist-induced phosphoinositide hydrolysis in choroid plexus. J Neurochem47: 1754–1760.PubMedCrossRefGoogle Scholar
  44. 44.
    Conn PJ, Sanders-Bush E (1987): Relative efficacies of piperazines at the phosphoinositide hydrolysis-linked serotonergic (5-HT2 and 5-HT1c) receptors. J Pharmacol Exp Ther242: 552–557.PubMedGoogle Scholar
  45. 45.
    Conn PJ, Sanders-Bush E (1985): Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions. J Pharmacol Exp Ther234: 195–203.PubMedGoogle Scholar
  46. 46.
    Kendall DA, Nahorski SR (1985): 5-hydroxytryptamine-stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of antidepressants. J Pharmacol Exp Ther 233:473–479.PubMedGoogle Scholar
  47. 47.
    Conn PJ, Sanders-Bush E (1986): Regulation of serotonin-stimulated phosphoinositide hydrolysis: relation to the serotonin 5-HT2 binding site. J Neurosci6: 3669–3675.PubMedGoogle Scholar
  48. 48.
    Hansson, E, Simonsson P, Ailing C (1987): 5-hydroxytryptamine stimulated the formation of inositol phosphate in astrocytes from different regions of the brain. Neuropharmacology 26:1377–1382.PubMedCrossRefGoogle Scholar
  49. 49.
    Yagaloff KA, Hartig PR (1985): [I25I]-LSD binds to a novel serotonergic site on rat choroid plexus epithelial cells. /Neurosci 5: 3178–3183.PubMedGoogle Scholar
  50. 50.
    Bockaert J, Premont J, Tassin JP, Hamon M, Deterre P, Ebersolt C, Prochiantz A (1982): Pharmacological characteristics and neuronal localization of dopamine- and serotonin-sensitive adenylate cyclases in rat brain and snail neurones, pp. 155–166 in: Dumont JE, Nunez J, Schultz G (eds), Hormones and Cell Regulation 6. Elsevier Biomed Press.Google Scholar
  51. 51.
    Andrade R, Nicoll RA (1987): Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol (Lond) 394: 99–124.Google Scholar
  52. 52.
    Andrade R, Malenka RC, Nicoll RA (1986): A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science 234:1261–1265.PubMedCrossRefGoogle Scholar
  53. 53.
    Nicoll RA (1988): The coupling of neurotransmitter receptors to ion channels in the brain. Science241: 545–551.PubMedCrossRefGoogle Scholar
  54. 54.
    Joëls M, Shinnick-Gallagher P, Gallagher JP (1987): Effect of serotonin and serotonin analogues on passive membrane properties of lateral septal neurons in vitro. Brain Research 417:99–107.CrossRefGoogle Scholar
  55. 55.
    Aghajanian GK, Lakoski JM (1984): Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+-conductance. Brain Research305: 181–185.PubMedCrossRefGoogle Scholar
  56. 56.
    Vergé D, Daval G, Patey A, Gozlan H, Ei Mestikawy S, Hamon M (1985): Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Europ J Pharmacol113: 463–464.CrossRefGoogle Scholar
  57. 57.
    Weissmann-Nanopoulos D, Mach E, Magre J, Demassey Y, Pujol JF (1985): Evidence for the localization of 5-HT1A binding sites on serotonin containing neurons in the raphe dorsalis and raphe centralis nuclei of the rat brain. Neurochem Int7: 1061–1072.PubMedCrossRefGoogle Scholar
  58. 58.
    Hutson PH, Dourish CT, Curzon G (1986): Neurochemical and behavioural evidence for mediation of the hyperphagic action of 8-OH-DPAT by 5-HT cell body autoreceptors. Europ J Pharmacol129: 347 - 352.CrossRefGoogle Scholar
  59. 59.
    Carli M, Samanin R (1988): Potential anxiolytic properties of 8-hydroxy-2-(di-n- propylamino) tetralin, a selective serotonin1A receptor agonist. Psychopharmacology94: 84–91.PubMedCrossRefGoogle Scholar
  60. 60.
    Invernizzi RW, Cervo L, Samanin R (1988): 8-hydroxy-2-(di-n-propylamino) tetralin, a selective serotonin,A receptor agonist, blocks haloperidol-induced catalepsy by an action on raphe nuclei medianus and dorsalis. Neuropharmacology 27:515–518.PubMedCrossRefGoogle Scholar
  61. 61.
    Hutson PH, Donohoe TP, Curzon G (1987): Hypothermia induced by the putative 5-HT1A agonists LY 165163 and 8-OH-DPAT is not prevented by 5-HTdepletion. Europ J Pharmacol143: 221–228.CrossRefGoogle Scholar
  62. 62.
    Sprouse JS, Aghajanian GK (1987): Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse1: 3–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Martin KF, Mason R (1987): Isapirone is a partial agonist at 5-hydroxytryptamine1A (5-HT 1A) receptors in the rat hippocampus: electrophysiological evidence. Europ J Pharmacol141: 479–483.CrossRefGoogle Scholar
  64. 64.
    Andrade R, Nicoll RA (1987): Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiological responses on single neurons of the rat hippocampus. Naunyn-Schmiedeberg’s Arch Pharmacol336: 5–10.CrossRefGoogle Scholar
  65. 65.
    Colino A, Halliwell JV (1986): 8-OH-DPAT is a strong antagonist of 5-HT action in rat hippocampus. Europ J Pharmacol 130:151–152.CrossRefGoogle Scholar
  66. 66.
    Smith LM, Peroutka SJ (1986): Differential effects of 5-hydroxytryptamine1A selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav24: 1513–1519.PubMedCrossRefGoogle Scholar
  67. 67.
    Dumuis A, Sebben M, Bockaert J (1988): Pharmacology of 5-hydroxtryptamine1A receptors which inhibit cAMP production in hippocampal and cortical neurons in primary culture. Mol Pharmacol33: 178–186.PubMedGoogle Scholar
  68. 68.
    Nelson DL, Taylor EW (1986): Spiroxatrine: a selective serotonin 1A receptor antagonist. Europ J Pharmacol124: 207–208.CrossRefGoogle Scholar
  69. 69.
    Herrick-Davis K, Titeler M (1988): [3H] spiroxatrine: a 5-HT1A radioligand with agonist binding properties. J Neurochem 50: 528–533.PubMedCrossRefGoogle Scholar
  70. 70.
    Mir AK, Hibert M, Tricklebank MD, Middlemiss DN, Kidd EJ, Fozard JR (1988): MDL 72832: a potent and stereoselective ligand at central and peripheral 5-HT1A receptors. Europ J Pharmacol149: 107–120.CrossRefGoogle Scholar
  71. 71.
    Blier P, De Montigny C (1987): Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse1: 470–480.PubMedCrossRefGoogle Scholar
  72. 72.
    Kennett, GA, Marcou M, Dourish CT, Curzon G (1987): Single administration of 5-HT1A agonists decreases 5-HT1A presynaptic, but not postsynaptic receptor-mediated responses: relationship to antidepressant-like action. Europ J Pharmacol 138: 53–60.CrossRefGoogle Scholar
  73. 73.
    Blier P, De Montigny C (1983): Electrophysiological investigations on the effect of repeated zimelidine administration on serotonergic neurotransmission in the rat. J Neurosciy. 1270–1278.PubMedGoogle Scholar
  74. 74.
    Claustre Y, Rouquier L, Scatton B (1988): Pharmacological characterization of serotonin- stimulated phosphoinositide turnover in brain regions of the immature rat. J Pharmacol Exp Ther244: 1051–1056.PubMedGoogle Scholar
  75. 75.
    Claustre Y, Bénavides J, Scatton B (1988): 5-HT1A receptor agonists inhibit carbachol- induced stimulation of phosphoinositide turnover in the rat hippocampus. Europ J Pharmacol 149:149–153.CrossRefGoogle Scholar
  76. 76.
    Kobilka BK, Kobilka TS, Daniel K, Regan JW, Caron MG, Lefkowitz RJ (1988): Chimeric α;2-, ß 2-adrenergic receptors: delineation of domains involved in effector coupling and ligand binding specificity. Science240: 1310–1316.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • M. Hamon
  • M. B. Emerit
  • S. el Mestikawy
  • M. C. Gallissot
  • H. Gozlan

There are no affiliations available

Personalised recommendations