Receptors for 5-hydroxytryptamine in the cardiovascular system

  • Marlene L. Cohen
Part of the Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine book series (DICM, volume 106)


5-Hydroxytryptamine (5-HT; serotonin) receptor characterization has revealed three broad classes of receptors: 5-HT1, 5-HT2, and 5-HT3 [1, 2]. At least four subtypes of the 5-HT1 receptor exist: 5-HT1A, 5-HT1B, 5-HT1C and 5-HT1D. The suggestion has been made that 5-HT3 receptors may also be heterogeneous; however, general consensus in this regard has not been achieved. Although the precise number of 5-HT receptors is controversial (due to limitations and specificity of drugs used to study these receptors), it is clear that many of the receptors identified in brain membrane binding studies also exist within the cardiovascular system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacol 25: 563–576.CrossRefGoogle Scholar
  2. 2.
    Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacol 25: 563–576.CrossRefGoogle Scholar
  3. 3.
    Buccino RA, Covell JW, Sonnenblick EH, Braunwald E (1967): Effects of serotonin on the contractile state of the myocardium. Am J Physiol 213: 483–486.PubMedGoogle Scholar
  4. 4.
    . Sakai K, Akima M (1979): An analysis of the stimulant effects of 5-hydroxytryptamine on isolated, blood-perfused rat heart. Eur J Pharmacol 55 : 421 – 424.PubMedCrossRefGoogle Scholar
  5. 5.
    Richardson BP, Engel G, Donatsch P, Stadler PA (1985): Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature 316: 126–131.PubMedCrossRefGoogle Scholar
  6. 6.
    Brittain RT, Butler A, Coates IM, Fortune DM, Hagan R, Hill JM, Humber DC, Humphrey PPA, Ireland SJ, Jack D, Jordan CC, Oxford A, Straughan DW, Tyers MB (1987): GR38032F, a novel selective 5-HT3 receptor antagonist. Br J Pharmacol 90: 87 P.Google Scholar
  7. 7.
    Smith WW, Sancilio LF, Owera-Atepo JB, Naylor RJ, Lambert L (1988): Zacopride, a potent 5-HT3 antagonist. J Pharm Pharmacol 40: 301–302.PubMedCrossRefGoogle Scholar
  8. 8.
    Thoren PN (1973): Evidence for a depressor reflex elicited from left ventricular receptors during occlusion of one coronary artery in the cat. Acta Physiol Scand 88: 23–34.PubMedCrossRefGoogle Scholar
  9. 9.
    Toubes DB, Brody MJ (1970): Inhibition of reflex vasoconstriction after experimental coronary embolization of the dog. Circ Res 27: 211–224.CrossRefGoogle Scholar
  10. 10.
    Ahmed SS, Gupta RC, Branceto RR (1978): Significance of nausea and vomiting during acute myocardial infarction. Am Heart J 93: 671.CrossRefGoogle Scholar
  11. 11.
    Koren G, Weiss AT, Ben-David Y, Hasin Y, Luria MH, Gotsman MS (1986): Bradycardia and hypotension following reperfusion with streptokinase (Bezold-Jarisch reflex): A sign of coronary thrombolysis and myocardial salvage. Am Heart J 112: 468.PubMedCrossRefGoogle Scholar
  12. 12.
    Saxena PR, Mylecharane EJ, Heiligers J (1985): Analysis of the heart rate effects of 5-hydroxytryptamine in the cat; mediation of tachycardia by 5-HT1-like receptors. Naunyn-Schmiedeberg’s Arch. Pharmacol 330: 121–129.CrossRefGoogle Scholar
  13. 13.
    Saxena PR, Lawang A (1985): A comparison of cardiovascular and smooth muscle effects of 5-hydroxytryptamine and 5-carboxamidotryptamine, a selective agonist of 5-HT1 receptors. Arch int Pharmacodyn 227: 235–252.Google Scholar
  14. 14.
    Fozard JR (1984): MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 326: 36–44.CrossRefGoogle Scholar
  15. 15.
    Feniuk W, Hare J, Humphrey PPA (1981): An analysis of the mechanism of 5-hydroxy- tryptamine-induced vasopressor responses in ganglion-blocked anaesthetized dogs. J Pharm Pharmacol 33: 155–160.PubMedCrossRefGoogle Scholar
  16. 16.
    Bom AH, Duncker DJ, Verdouw PD, Saxena PR (1986): 5-hydroxytryptamine-induced tachycardia in the pig: mediation by a new type of 5-hydroxytryptamine receptor? Pharm WeekblSci 8:270.Google Scholar
  17. 17.
    Kaumann AJ (1985): Two classes of myocardial 5-hydroxytryptamine receptors that are neither 5-HT, nor 5-HT2. J Cardiovasc Pharmacol 7: S76–S78.PubMedCrossRefGoogle Scholar
  18. 18.
    Cohen ML Serotonin receptors in vascular smooth muscle, in: Sanders E (ed), The serotonin receptors. New Jersey: Bush Human Press Inc.Google Scholar
  19. 19.
    Roth BL, Nakaki T, Chuang D-M, Costa E (1984): Aortic recognition sites for serotonin (5-HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover. Neuropharmacol 23: 1225–1335.CrossRefGoogle Scholar
  20. 20.
    Cohen ML, Wittenauer LA (1987): Serotonin receptor activation of phosphoinositide turnover in uterine, fundal, vascular and tracheal smooth muscle. J Cardiovas Pharmacol 10: 176–181.CrossRefGoogle Scholar
  21. 21.
    Kaumann AJ, Frenken M (1985): A paradox: the 5-HT2-receptor antagonist ketanserin restores the 5-HT-induced contraction depressed by methysergide in large coronary arteries of calf. Naunyn-Schmiedeberg’s Arch Pharmacol 328: 295–300.CrossRefGoogle Scholar
  22. 22.
    Cohen ML, Colbert WE (1986): Relationship between receptors mediating serotonin (5-HT) contractions in the canine basilar artery to 5-HT1 5-HT2 and rat stomach fundus 5-HT receptors. J Pharmacol Exp Ther 237: 713–718.PubMedGoogle Scholar
  23. 23.
    Peroutka SJ, Noguchi M, Tolner DJ, Allen GS (1983): Serotonin-induced contraction of canine basilar artery: mediation by 5-HT1 receptors. Brain Res 259: 327–330.PubMedCrossRefGoogle Scholar
  24. 24.
    Taylor EW, Duckies SP, Nelson DL (1986): Dissociation constants of serotonin agonists in the canine basilar artery correlate to Ki values at the 5-HT1A binding site. J Pharmacol Exp Ther 236: 118–125.PubMedGoogle Scholar
  25. 25.
    Peroutka SJ, Huang S, Allen GS (1986): Canine basilar artery contractions mediated by 5-hydroxytryptamine1A receptors. J Pharmacol Exp Ther 237: 901–906.PubMedGoogle Scholar
  26. 26.
    Muller-Schweinitzer E, Engel G (1983): Evidence for mediation by 5-HT2 receptors of 5-hydroxytryptamine-induced contraction of canine basilar artery. Naunyn-Schmiedeberg’s Arch Pharmacol 324: 287–292.CrossRefGoogle Scholar
  27. 27.
    Frenken M, Kaumann AJ (1985): Ketanserin causes surmountable antagonism of 5-hydroxytryptamine-induced contractions of large coronary arteries of dog. Naunyn- Schmiedeberg’s Arch Pharmacol 328: 301–303.CrossRefGoogle Scholar
  28. 28.
    Docherty JR, Hyland L (1986): An examination of 5-hydroxytryptamine receptors in human saphenous vein. Br J Pharmacol 89: 77–81.PubMedCrossRefGoogle Scholar
  29. 29.
    Trevethick MA, Feniuk W, Humphrey PPA (1984): 5-hydroxytryptamine-induced relaxation of neonatal porcine vena cava in vitro. Life Sci 35:477–486.CrossRefGoogle Scholar
  30. 30.
    Luscher TF, Vanhoutte PM (1986): Endothelium-dependent responses to platelets and serotonin in spontaneously hypertensive rats. Hypertension 8: II-55-II-60.Google Scholar
  31. 31.
    Hirafuji M, Akiyama Y, Ogura Y (1987): Receptor-mediated stimulation of aortic prostacyclin release by 5-hydroxytryptamine. Eur J Pharmacol 143: 259–265.PubMedCrossRefGoogle Scholar
  32. 32.
    Trevethick MA, Feniuk W, Humphrey PPA (1986): 5-Carboxamidotryptamine: A potent agonist mediating relaxation and elevation of cyclic AMP in the isolated neonatal porcine vena cava. Life Sci 38:1521–1528.PubMedCrossRefGoogle Scholar
  33. 33.
    Feniuk W, Humphrey PPA, Watts AD (1983): 5-Hydroxytryptamine-induced relaxation of isolated mammalian smooth muscle. Eur J Pharmacol 96:71–78.PubMedCrossRefGoogle Scholar
  34. 34.
    Saxena PR, Duncker DJ, Bom AH, Heiligers J, Verdouw, PD (1986): Effects of MDL 72222 and methiothepin on carotid vascular responses to 5-hydroxytryptamine in the pig: Evidence for the presence of “5-hydroxytryptamine1-like” receptors. Naunyn- Schmiedeberg’s Arch Pharmacol 333: 198–204.CrossRefGoogle Scholar
  35. 35.
    Katayama S, Shionoya H, Ohtake S (1978): A new method for extraction of extravasated dye in the skin and the influence of fasting stress on passive cutaneous anaphylaxis in guinea pigs and rats. Microbiol Immunol 22 (2): 89–101.PubMedCrossRefGoogle Scholar
  36. 36.
    De Clerck F, Van Gorp L, Beetens J, Reneman RS (1985): Platelet-mediated vascular permeability in the rat: a predominant role of 5-hydroxytryptamine. Thrombosis Res 38: 321–339.CrossRefGoogle Scholar
  37. 37.
    Doepfner W, Cerletti A (1958): Comparison of lysergic acid derivatives and antihistamines as inhibitors of the edema provoked in the rat’s paw by serotonin. Int Arch Allergy 12: 89–97.PubMedCrossRefGoogle Scholar
  38. 38.
    Doepfner W, Cerletti A (1958): Comparison of lysergic acid derivatives and antihistamines as inhibitors of the edema provoked in the rat’s paw by serotonin. Int Arch Allergy 12: 89–97.PubMedCrossRefGoogle Scholar
  39. 39.
    Awouters F, Niemegeers CJE, Janssen PAJ (1981): Inhibitors of mast cell-mediated shock in the rat: Relationship to histamine and serotonin antagonism. Drug Develop Res 1: 107–114.CrossRefGoogle Scholar
  40. 40.
    De Clerck F, Xhonneux B, Leysen J, Janssen PAJ (1984): Evidence for functional 5-HT2 receptor sites on human blood platelets. Biochem Pharmacol 33: 2807–2811.PubMedCrossRefGoogle Scholar
  41. 41.
    Chaffoy de Courcelles D, Roevens P, Van Belle H, De Clerck F (1987): The synergistic effect of serotonin and epinephrine on the human platelet at the level of signal transduction. FEBS Letters 219: 2830–288.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • Marlene L. Cohen

There are no affiliations available

Personalised recommendations