The central antihypertensive action of 5-hydroxytryptamine: The location of site of action

  • J. H. Coote
Part of the Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine book series (DICM, volume 106)


A great number of studies indicate that 5-hydroxytryptamine (5-HT) acts as a neurotransmitter or neuromodulator at sites in the CNS. Fluorescence histochemical and immunohistochemical studies have shown that 5-HT containing neurones originating in the brainstem project to a number of forebrain structures as well as to specific regions of mid brain, hind brain and spinal cord [1–8]. Furthermore, electrophysiological investigations have demonstrated both inhibitory and excitatory effects of 5-HT on spinal and brainstem neurones (see reviews [9–11]). From the many studies cited in these reviews it is clear that 5-HT neurones project to regions of the CNS intimately involved in cardiovascular regulation and that 5-HT could have excitatory or inhibitory actions at these sites. Sites which are of particular interest are the preoptic/anterior hypothalamus, the ventrolateral medulla and the dorsal medulla.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dahlstrom A, Fuxe K (1965): Evidence for the existence of monoamine neurones in the central nervous system II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neurone systems. Acta Physiol Scand 64 (suppl. 247): 5–36.Google Scholar
  2. 2.
    Fuxe K (1965): Evidence for the existence of monoamine nerve terminals in the central nervous system. Acta Physiol Scand 64 (suppl. 247): 37–85.Google Scholar
  3. 3.
    Azmitia EC, Segal M (1978): An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179: 641–668.PubMedCrossRefGoogle Scholar
  4. 4.
    Moore RY, Halaris AE, Jones BE (1978): Serotonin neurons of the mid brain raphe: Ascending projections. J Comp Neurol 180: 417–438.PubMedCrossRefGoogle Scholar
  5. 5.
    Bowker RM, Westlund KN, Coulter JD (1981): Serotonergic projections to the spinal cord from the mid brain in the rat. An immunocytochemical and retrograde transport study. Neurosci Lett 24: 221–226.PubMedCrossRefGoogle Scholar
  6. 6.
    Steinbusch HWM (1981): Distribution of serotonin immunoreactivity in the central nervous system of the rat—cell bodies and terminals. Neurosci 6: 557–618.CrossRefGoogle Scholar
  7. 7.
    Pickel VM, Joh TH, Chan J, Beaudet A (1984): Serotonergic terminals: ultrastructure and synaptic interaction with catecholamine-containing neurons in the medial nuclei of the solitary tract. J Comp Neurol 225: 291–301.PubMedCrossRefGoogle Scholar
  8. 8.
    Lanca AJ, van der Kroy D (1985): A serotonin containing pathway from the area postrema to the parabrachial nucleus in the rat. Neuroscience 14: 1117–1126.PubMedCrossRefGoogle Scholar
  9. 9.
    Krnjevic K (1974): Chemical nature of synaptic transmission in vertebrates. Physiol Rev 54: 418–540.Google Scholar
  10. 10.
    Fozard JR (1984): Neuronal 5-HT receptors in the periphery. Neuropharmacology 23: 1473–1486.PubMedCrossRefGoogle Scholar
  11. 11.
    Coote JH (1988): Organisation of cardiovascular neurones in the spinal cord. Rev Physiol Biochem Pharmacol 10: 147–285.CrossRefGoogle Scholar
  12. 12.
    Smits JF, Struyker-Boudier HA (1976): Intrahypothalamic serotonin and cardiovascular control in rats. Brain Res III: 422–427.CrossRefGoogle Scholar
  13. 13.
    Saavedra JM, Palkovits M, Browstein MJ, Axelrod J (1974): Serotonin distribution in the nuclei of the rat hypothalamus and preoptic region. Brain Res 77: 157–165.PubMedCrossRefGoogle Scholar
  14. 14.
    Smits JF, van Essen H, Struyker-Boudier HA (1978): Serotonin mediated cardiovascular responses to electrical stimulation of the raphe nuclei in the rat. Life Sci 23: 173–178.PubMedCrossRefGoogle Scholar
  15. 15.
    Kuhn DM, Wolf WA, Lovenberg W (1980): Pressor effects of electrical stimulation of the dorsal and median raphe nuclei in anaesthetised rats. J Pharmac Exp Ther 214: 403–409.Google Scholar
  16. 16.
    Robinson SE (1982): Interaction of the median raphe nucleus and hypothalamic serotonin with cholinergic agents and pressor responses in the rat. J Pharmac Exp Ther 223: 662–668.Google Scholar
  17. 17.
    Sukamoto T, Yamomoto T, Watanabe S, Ueki S (1984): Cardiovascular responses to centrally administered serotonin in conscious normotensive and spontaneously hypertensive rats. Europ J Pharmacol 100: 173–179.CrossRefGoogle Scholar
  18. 18.
    Piper RD, Goadsby PJ (1985): Pressor response to electrical and chemical stimulation of nucleus raphe dorsalis in the cat. Stroke 16: 307–312.PubMedCrossRefGoogle Scholar
  19. 19.
    Robinson SE, Austin MJF, Gibbens DM (1985): The role of serotonergic neurones in dorsal raphe, median raphe and anterior hypothalamic pressor mechanisms. Neuropharmacology 24: 51–58.PubMedCrossRefGoogle Scholar
  20. 20.
    Robinson SE (1984): Cardiovascular effects of alpha-adrenergic agents in the dorsal raphe nucleus of the cat. Brain Res 295: 249–254.PubMedCrossRefGoogle Scholar
  21. 21.
    Lambert GA, Friedman E, Gershon S (1975): Centrally mediated cardiovascular responses to 5-HT. Life Sci 17: 915–919.PubMedCrossRefGoogle Scholar
  22. 22.
    Krstic MK, Djurkovic D (1976): Hypertension mediated by activation of the rat brain 5-hydroxytryptamine receptor sites. Experientia 32: 1187–1189.PubMedCrossRefGoogle Scholar
  23. 23.
    Krstic MK, Djurkovic D (1980): Analysis of cardiovascular responses to central administration of 5-hydroxytryptamine in rats. Neuropharmacology 19: 455–463.PubMedCrossRefGoogle Scholar
  24. 24.
    Krstic MK, Djurkovic D (1981): Comparison of the cardiovascular responses to intracerebroventricular administration of tryptamine, 5-hydroxytryptamine, tryptophan and 5-hydroxytryptophan in rats. Arch Int Physiol Biochem 89: 385–391.CrossRefGoogle Scholar
  25. 25.
    Lambert GA, Friedman E, Buchweitz E, Gershon S, (1978): Involvement of 5-hydroxy- tryptamine in the central control of respiration, blood pressure and heart rate in the anaesthetised rat. Neuropharmacology 17: 807–813.PubMedCrossRefGoogle Scholar
  26. 26.
    Dalton DW, Fortune DH, Tyers MB (1983): Central cardiovascular effects of 5-hydroxy- tryptamine in the conscious rat. Brit J Pharmacol Proc 78 (suppl. 1): 132 P.Google Scholar
  27. 27.
    Dalton DW (1986): The cardiovascular effects of centrally administered 5-hydroxy trypta- mine in the conscious normotensive and hypertensive rat. J Auton Pharmac 6: 67–75.CrossRefGoogle Scholar
  28. 28.
    Dalton DW (1987): An investigation of the central actions of 5.hydroxytryptamine on the cardiovascular system. PhD Thesis CNAA Glaxo Group Research Ltd Ware, Hertfordshire.Google Scholar
  29. 29.
    Coote JH, Dalton DW, Feniuk W, Humphrey PPA (1987): The central site of the sympatho-inhibitory action of 5-hydroxytryptamine in the cat. Neuropharmacology 26: 147–154.PubMedCrossRefGoogle Scholar
  30. 30.
    Krstic MK, Djurkovic D (1987): Modification by physostigmine of the cardiovascular responses to intracerebroventricular administration of 5-hydroxytryptamine in rats. Arch Int Physiol Biochem 95: 153–158.CrossRefGoogle Scholar
  31. 31.
    Bennaroch EE, Balda MS, Finkielman S, Nahmod VE (1983): Neurogenic hypertension after depletion of norepinephrine in anterior hypothalamus induced by 6-hydroxydopa- mine administration into the ventral pons: the role of serotonin. Neuropharmacology 22: 29–34.CrossRefGoogle Scholar
  32. 32.
    Lovick TA (1987): Differential control of cardiac and vasomotor activity by neurones in nucleus paragigantocellularis lateralis in the cat. J Physiol 389: 23–35.PubMedGoogle Scholar
  33. 33.
    Guertzenstein PG, Silver A (1974): Fall in blood pressure produced from discrete regions of the ventral surface of the medulla by glycine and lesions. J Physiol 242: 489–503.PubMedGoogle Scholar
  34. 34.
    Dampney RAL, Goodchild AK, Robertson LG, Montgomery W (1982): Role of the ventrolateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Res 249: 223–235.PubMedCrossRefGoogle Scholar
  35. 35.
    Howe PRC, Kuhn DM, Minson JB, Stead BH, Chalmers P (1983): Evidence for a bulbospinal serotonergic pressor pathway in the rat brain. Brain Res 270: 29–36.PubMedCrossRefGoogle Scholar
  36. 36.
    Hilton SM, Marshall JM, Timms RJ (1983): Ventral medullary relay neurones in the pathway from the defence areas of the cat and their effects on blood pressure. J Physiol 345: 149–166.PubMedGoogle Scholar
  37. 37.
    Ross CA, Ruggiero DA, Park D, Joh A, Sved AF, Fernandez-Pardal J, Saavedra JM, Reis DJ (1984): Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical and chemical stimulation of the area containing C1 adrenaline neurones on arterial blood pressure, heart rate and plasma catecholamines and vasopressin. J Neurosci 4: 474–494.PubMedGoogle Scholar
  38. 38.
    Guertzenstein PG (1973): Blood pressure effects obtained from drugs applied to the ventral surface of the brainstem. J Physiol 229: 395–408.PubMedGoogle Scholar
  39. 39.
    Wilette RN, Barcas PP, Krieger AJ, Sapru HN (1983): Vasopressor and depressor areas in the rat medulla: identification by microinjection of 1-glutamate. Neuropharmacology 22: 1071–1079.CrossRefGoogle Scholar
  40. 40.
    Dean C, Coote JH (1987): A ventromedullary relay involved in the hypothalamic and chemoreceptor activation of sympathetic postganglionic neurones to skeletal muscle, kidney and splanchnic area. Brain Res 377: 279–285.CrossRefGoogle Scholar
  41. 41.
    McAllen RM (1986a): Location of neuronds with cardiovascular and respiratory function at the ventral surface of the cats medulla. Neuroscience 18: 43–49.CrossRefGoogle Scholar
  42. 42.
    Adrezik JA, Chan-Palay V, Palay SL (1981): The nucleus paragigantocellularis lateralis in the rat. Conformation and cytology. Anatomy and Embryology 161: 355–377.CrossRefGoogle Scholar
  43. 43.
    Newman DB (1985): Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I Medullary nuclei. J fur Hirrtforschung 26: 187–226.Google Scholar
  44. 44.
    Lovick TA (1988): Hypotensive action of 5-HT in the ventrolateral medulla of an aesthetised rats. J Physiol 412: 14 P.Google Scholar
  45. 45.
    McAllen RM (1986): Action and specificity of ventral medullary vasopressor neurones in the cat. Neuroscience 18: 43–49.PubMedCrossRefGoogle Scholar
  46. 46.
    Dampney RAL, McAllen RM (1986): Functional specificity of ventral medullary pre- sympathetic neurones in the cat. J Physiol 377, 58 P.Google Scholar
  47. 47.
    Lovick TA (1988): Covergent afferent inputs to neurones in nucleus paragigantocellularis lateralis in the cat. Brain Res 456: 183–187.PubMedCrossRefGoogle Scholar
  48. 48.
    Jordan D, Spyer KM, Writhington-Wray DJ, Wood LM (1986): Histochemical and electrophysiological identification of cardiac and pulmonary vagal preganglionic neurones in the cat. J Physiol 372, 87 P.Google Scholar
  49. 49.
    Jordan D, Khalid MEM, Schniederman N, Spyer KM (1982): The location and properties of preganglionic vagal cardiomotor neurones in the rabbit. Pflugers Arch 395: 244–250.PubMedCrossRefGoogle Scholar
  50. 50.
    Jordan D, Spyer KM (1987): Central neural mechanisms mediating respiratory- cardiovascular interactions, pp. 322–341 in: Taylor EW (ed), Neurobiology of the cardiorespiratory system. Manchester: University Press.Google Scholar
  51. 51.
    Jordan D, Izzo PN, Spyer KM, Rammage AG (1987): Pharmacological and immunocyto- chemical evidence that central 5-HT neurones participate in cardiac regulation in the cat. Neurosci Lett (suppl. 32) SI2.Google Scholar
  52. 52.
    Bevan P, Pammage AG, Wouters W (1986): Investigation of the effects of DU 29373 on the cardiovascular system of the anaesthetised cat. Brit J Pharmacol 89, 506 P.Google Scholar
  53. 53.
    Fozard JR, Mir AK, Middlemiss DN (1987): Cardiovascular response to 8-hydroxy-2-(di-n-Propylamino) Tetralin (8 OH DPAT) in the rat: Site of action and pharmacological analysis. J Cardiovasc Pharmac 9: 328–347.CrossRefGoogle Scholar
  54. 54.
    Rammage AG, Fozard JR (1987): Evidence that the putative 5-HTIA agonists, 8 OH DPAT and ipsapirone, have a central hypotensive action that differs from that of clonidine in anaesthetised cats. Europ J Pharmac 138: 179–191.CrossRefGoogle Scholar
  55. 55.
    Gradin K, Petterson A, Hechner T, Persson B (1985): Acute administration of 8-hydroxy-2-(di-n-Propylamino) Tetralin (8 OH DPAT), a selective 5-HT receptor agonist, causes a biphasic blood pressure response and bradycardia in the normotensive Sprague Dawley rat and in the spontaneously hypertensive rat. J Neurol Trans 62: 305–319.CrossRefGoogle Scholar
  56. 56.
    Pazos A, Palacios JM (1985): Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-I receptors. Brain Res 346: 205–230.PubMedCrossRefGoogle Scholar
  57. 57.
    Pazos A, Probst A, Palacios JM (1987): Serotonin receptors in the human brain 111. Autoradiographic mapping of serotonin I receptors. Neurosci 21: 123–139.CrossRefGoogle Scholar
  58. 58.
    Spyer KM (1981): Neural organisation and control of the baroreceptor reflex. Rev Physiol Biochem Pharmacol 88: 23–124.CrossRefGoogle Scholar
  59. 59.
    Talman WT, Perrone MH, Scher P, Kwo S, Reis DJ (1981): Antagonism of the baroreceptor reflex by glutamate diethylester on antagonist to L-glutamate. Brain Res 217: 186–191.PubMedCrossRefGoogle Scholar
  60. 60.
    Talman WT, Reis DJ (1981): Baroreceptor actions of SP microinjected into the nucleus tractus solitarii in rat: a consequence of local distortion. Brain Res 220: 402–407.PubMedCrossRefGoogle Scholar
  61. 61.
    Basbaum AI, Clanton CH, Fields HL (1978): Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J Comp Neurol 178: 567–574.CrossRefGoogle Scholar
  62. 62.
    Laguzzi R, Reis DJ, Talman WT (1984): Modulation of cardiovascular and electrocortical activity through serotonergic mechanisms in the nucleus tractus solitarius of the rat. Brain Res 304: 321–328.PubMedCrossRefGoogle Scholar
  63. 63.
    Wsniewski H, Olszewski J (1963): Vascular permeability in the area postrema and hypothalamus. Neurology 13: 885–894.PubMedCrossRefGoogle Scholar
  64. 64.
    Klara PM, Briszee KR (1977): Ultrastructure of the feline area postrema. J Comp Neurol 171: 409–432.CrossRefGoogle Scholar
  65. 65.
    Takeuchi Y, Sano Y (1983): Serotonin distribution in the circumventricular organs of the rat. Anat Embryol 167: 311–319.PubMedCrossRefGoogle Scholar
  66. 66.
    Newton BW, Maley B, Traurig H (1985): The distribution of substance P, enkephalin, and serotonin immunoreactivities in the area postrema of the rat and cat. J Comp Neurol 234: 87–104.PubMedCrossRefGoogle Scholar
  67. 67.
    Barnes KL, Ferrario CM (1980): Characterisation of the sympathofacilitative area postrema pathway. Clin Sci 59:255s–257s.Google Scholar
  68. 68.
    Joy MD, Lowe RD (1970): Evidence that the area postrema mediates the central cardiovascular response to Angiotensin II. Nature 228: 1303–1304.PubMedCrossRefGoogle Scholar
  69. 69.
    Joy MD, (1971): The intramedullary connections of the area postrema involved in the central cardiovascular response to Angiotensin II. Clin Sci 41: 89–100.PubMedGoogle Scholar
  70. 70.
    Gildenberg PL, Ferrario CM, McCubbin JW (1973): Two sites of cardiovascular action of Angiotensin II in the brain of the dog. Clin Sci 44: 417–420.PubMedGoogle Scholar
  71. 71.
    Szilagyi JE, Ferrario CM (1981): Central opiate system modulation of the area postrema pressor pathway. Hypertension 3: 313–317.PubMedCrossRefGoogle Scholar
  72. 72.
    Kosten T, Contreras RJ, Stetson PW, Ernest MJ (1983): Enhanced saline intake and decreased heart rate after area postrema ablations in rat. Physiol Behav 31: 777–785.PubMedCrossRefGoogle Scholar
  73. 73.
    Carpenter DO, Briggs DB, Strominger N (1983): Responses of neurones of canine area postrema to neurotransmitters and peptides. Cell Mol Biol 3: 113–126.Google Scholar
  74. 74.
    Baum T, Shropshire AT (1975): Inhibition of efferent sympathetic nerve activity by 5-hydroxytryptophan and centrally administered 5-hydroxytryptamine. Neuropharmacol 14: 227–233.CrossRefGoogle Scholar
  75. 75.
    Kircheim HR (1976): Systemic arterial baroreceptor reflexes. Physiol rev 56: 100–176.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • J. H. Coote

There are no affiliations available

Personalised recommendations