Advertisement

Cardiovascular reflexes and 5-hydroxytryptamine

  • Daniel S. McQueen
Chapter
Part of the Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine book series (DICM, volume 106)

Abstract

The effects of 5-hydroxytryptamine (5-HT) on the cardiovascular system are complex and very variable [1], which is not surprising given that the amine can act directly on specific 5-HT receptors in the heart and blood vessels, inhibit transmitter release from adrenergic nerves, amplify the activity of mediators on vascular smooth muscle, displace noradrenaline from adrenergic nerve terminals, release endothelium-dependent relaxant factor(s), facilitate platelet aggregation, and, in addition, can also activate sensory receptors in the cardiopulmonary system and carotid bifurcation, thereby reflexly affecting the cardiovascular system [2, 3, 4]. This chapter focuses on certain sensors that are activated by 5-HT to cause reflex cardiovascular changes, and reviews what is known about the type(s) of 5-HT receptor involved in evoking these reflexes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Page IH, McCubbin JW (1953): The variable arterial pressure response to serotonin in laboratory animals and man. Circ Res 1: 354–362.PubMedCrossRefGoogle Scholar
  2. 2.
    Paintal AS (1955): Impulses in vagal afferent fibres from specific pulmonary deflation receptors. The response of these receptors to phenyl diguanide, potato starch, 5-hydroxytryptamine and nicotine, and their role in respiratory and cardiovascular reflexes. Q J Exp Physiol 40: 89–111.PubMedGoogle Scholar
  3. 3.
    Paintal AS (1973): Sensory mechanisms involved in the Bezold-Jarisch reflex. Australian J Exp Biol & Med Sci 51:3–15.CrossRefGoogle Scholar
  4. 4.
    Hollenberg NK (1988): Serotonin and vascular responses. Ann Rev Pharmacol Toxicol 28: 41–59.CrossRefGoogle Scholar
  5. 5.
    Page IH (1952): The vascular action of natural serotonin, 5- and 7-hydroxytryptamine and tryptamine. J Pharmacol Exp Ther 105: 58–73.PubMedGoogle Scholar
  6. 6.
    Salmoiraghi GC, Page IH, McCubbin JW (1956): Cardiovascular and respiratory response to intravenous serotonin in rats. J Pharmacol Exp Ther 118: 477–481.PubMedGoogle Scholar
  7. 7.
    Black AMS, Comroe JH Jr, Jacobs L (1972): Species difference in carotid body response of cat and dog to dopamine and serotonin. Am J Physiol 223: 1097–1102.PubMedGoogle Scholar
  8. 8.
    Daly M de B (1985): Chemoreceptor reflexes and cardiovascular control. Acta Physiol Pol 36: 4–20.Google Scholar
  9. 9.
    Heymans C, Neil E (1958): ‘Reflexogenic areas of the cardiovascular system’, pp. 271. London, Churchill.Google Scholar
  10. 10.
    Ginzel KH (1975): The importance of sensory nerve endings as sites of drug action. NS Arch Pharmacol 288: 29–56.CrossRefGoogle Scholar
  11. 11.
    Mancia G, Lorenz RR, Shepherd JT (1976): Reflex control of circulation by heart and lungs. Inter Rev Physiol Cardiovascular Physiol 11 9:111–144.Google Scholar
  12. 12.
    Paintal AS (1977): Effects of drugs on chemoreceptors, pulmonary and cardiovascular receptors. Pharmac Ther Bull 3: 41–63.Google Scholar
  13. 13.
    Donald DE, Shepherd JT (1978): Reflexes from the heart and lungs: physiological curiosities or important regulatory mechanisms. Cardiovasc Res 12: 446–469.PubMedCrossRefGoogle Scholar
  14. 14.
    Thoren P (1979): Role of cardiac vagal C-fibres in cardiovascular control. Rev Physiol Biochem Pharmacol 86: 1–94.PubMedCrossRefGoogle Scholar
  15. 15.
    Dawes GS, Mott JC, Widdicombe JG (1951): Respiratory and cardiovascular reflexes from the heart and lungs. J Physiol 115: 258–291.PubMedGoogle Scholar
  16. 16.
    Ginzel KH (1958): The effects of 5-hydroxytryptamine on peripheral receptors of cardiovascular and respiratory reflexes, pp. 131–135 in: Lewis GP (ed.), 5-Hydroxytryptamine. London: Pergamon.Google Scholar
  17. 17.
    Richardson BP, Engel G, Donatsch P, Stadler PA (1985): Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature 316: 126 - 131.PubMedCrossRefGoogle Scholar
  18. 18.
    Richardson BP, Engel G (1986): The pharmacology and function of 5-HT3 receptors. Trends in Neurosci 9: 424–428.CrossRefGoogle Scholar
  19. 19.
    Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylencharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacol 25: 563 - 576.CrossRefGoogle Scholar
  20. 20.
    Nishi K (1975): The action of 5-hydroxytryptamine on chemoreceptor discharges of the cat’s carotid body. Br J Pharmacol 55: 27–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Sapru HN, Krieger AJ (1977): Effect of 5-hydroxytryptamine on the peripheral chemoreceptors in the rat. Res Comm Chem Path Pharmacol 16: 245–250.Google Scholar
  22. 22.
    Sapru HN, Krieger AJ (1977): Carotid and aortic chemoreceptor function in the rat. J Appl Physiol 42: 344–348.PubMedGoogle Scholar
  23. 23.
    Chiocchio SR, Biscardi AM, Tramezzani JH (1967): 5-Hydroxytryptamine in the carotid body of the cat. Science 158:790–791.PubMedCrossRefGoogle Scholar
  24. 24.
    McQueen DS, Mir AK (1984): Changes in carotid body amine levels and effects of dopamine on rats treated neonatally with capsaicin. Br J Pharmacol 83: 909–918.PubMedCrossRefGoogle Scholar
  25. 25.
    Gronblad M, Liesi P, Rechardt L (1983): Serotonin-like immunoreactivity in rat carotid body. Brain Res 276: 348–350.PubMedCrossRefGoogle Scholar
  26. 26.
    Perrin DG, Chan W, Cutz E, Madapallimattam A, Sole MJ (1986): Serotonin in human infant carotid body. Experientia 42: 562–564.PubMedCrossRefGoogle Scholar
  27. 27.
    McQueen DS (1983): Pharmacological aspects of putative transmitters in the carotid body, pp. 149–196 in: Acker H, O’Regan RG (ed.), Physiology of the peripheral arterial chemoreceptors. Amsterdam: Elsevier.Google Scholar
  28. 28.
    McQueen DS, Ungar A (1971): On the direct and crossed components of reflex responses to stimulation of the carotid body chemoreceptors in the dog. J Physiol 219: 1–16.PubMedGoogle Scholar
  29. 29.
    Skinner SL, Whelan RF (1962): Carotid body stimulation by 5-hydroxytryptamine in man. J Physiol 162: 35–43.PubMedGoogle Scholar
  30. 30.
    Bisgard GE, Mitchell RA, Herbert DA (1979): Effects of dopamine, norepinephrine and 5-hydroxytryptamine on the carotid body of the dog. Resp Physiol 37: 61–80.CrossRefGoogle Scholar
  31. 31.
    Kirby GC, McQueen DS (1984): Effects of the antagonists MDL 72222 and ketanserin on responses of cat carotid body chemoreceptors to 5-hydroxytryptamine. Br J Pharmacol 83: 259–269.PubMedCrossRefGoogle Scholar
  32. 32.
    Eyzaguirre C, Koyano H (1965): The effects of some pharmacological agents on chemoreceptor discharges. J Physiol 178: 410–437.PubMedGoogle Scholar
  33. 33.
    Yoshioka M, Matsumoto M, Togashi H, Abe M, Tochihara M, Saito H (1987): The 5-hydroxytryptamine-induced increase in chemoreceptor afferent nerve discharge and its blockade by ICS 205-930 in the rat. Res Comm Psych Psych & Behaviour 12: 215–220.Google Scholar
  34. 34.
    Kirby GC, McQueen DS (1985): Effects of selective 5-hydroxytryptamine agonists on carotid body chemoreceptor discharge in anaesthetized cats. Br J Pharmac 86: 733 P.Google Scholar
  35. 35.
    McQueen DS, Mir AK (1988): Involvement of 5-HT3 receptors in responses of cat carotid body chemoreceptors to phenylbiguanide. J Physiol 401: 86 P.Google Scholar
  36. 36.
    Scholtysik G. (1987): Evidence for inhibition by ICS 205–930 and stimulation by BRL 34915 of K+ conductance in cardiac muscle. N-S. Arch. Pharmacol 335: 692–696.CrossRefGoogle Scholar
  37. 37.
    Verberne AJM, Costa M, Lewis SJ, Louis WJ, Beart PM (1987): The N-Methyl-D-aspartate (NMDA) receptor antagonist MK-801, attenuates the Bezold-Jarisch reflex in the anaesthetized rat. Neuropharmacology 26: 1243–6.PubMedCrossRefGoogle Scholar
  38. 38.
    Fortune DH, Ireland SJ, Tyers MB (1983): Phenylbiguanide minics the effects of 5-hydroxytryptamine on the rat isolated vagus nerve and superior cervical ganglion. Br J Pharmacol 79: 298 P.Google Scholar
  39. 39.
    Collins DP, Fortune DH (1983): Phenylbiguanide mimics the Bezold-Jarisch effect of 5-HT in the rat. Br J Pharmac 80: 570 P.Google Scholar
  40. 40.
    Fozard JR (1984): MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. N-S Arch Pharmacol 326: 36–44.CrossRefGoogle Scholar
  41. 41.
    Richardson BP, Engel G, Dontasch P, Stadler PA (1985): Identification of serotonin M-receptor subtypes and their specific blockade by a new class of drugs. Nature 316: 126–131.PubMedCrossRefGoogle Scholar
  42. 42.
    Ireland SJ, Tyers MB (1987): Pharmacological characterisation of 5-hydroxytryptamine- induced depolarization of the rat isolated vagus nerve. BrJPharmac 90: 229–238.CrossRefGoogle Scholar
  43. 43.
    Paintal AS (1986): The significance of dry cough, breathlessness and muscle weakness. IndJ Tuberculosis 33: 51–55.Google Scholar
  44. 44.
    Armstrong DJ, Kay IS, Russell NJW (1986): The pulmonary chemoreflexes evoked by phenylbiguanide, diguanide and guanide. J Physiol 371: 115 P.Google Scholar
  45. 45.
    Armstrong DJ, Kay IS, Russell NJW (1986): MDL 72222 antagonizes the reflex tachypneoic response to miliary pulmonary embolism in anaesthetized rabbits. J Physiol 381: 13 P.Google Scholar
  46. 46.
    Sapru HN, Willette RN, Krieger AJ (1981): Stimulation of pulmonary J receptors by an enkephalin analog. J Pharm Exp Ther 217: 228–234.Google Scholar
  47. 47.
    Sicuteri F (1983): Is acute tolerance to 5-hydroxytryptamine opioid dependent? Its absence in migraine sufferers. Cephalagia 3: 187–190.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • Daniel S. McQueen

There are no affiliations available

Personalised recommendations