Advertisement

5-Hydroxytryptamine and related drugs and autonomic ganglia

  • D. I. Wallis
  • P. Elliott
Chapter
Part of the Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine book series (DICM, volume 106)

Abstract

A cardiovascular response to 5-HT will be evoked if, amongst other actions, the amine increases impulse traffic in sympathetic neurones causing vasoconstriction or in autonomic neurones which alter cardiac output. In addition, cardiovascular responses will be modified if 5-HT modulates the output of transmitter at the neuroeffector junction. Cardiovascular actions may also result from 5-HT affecting the afferent limb of reflex pathways.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wallis DI (1981): Neuronal 5-hydroxytryptamine receptors outside the central nervous system. Life Sci 29: 2345–2355.PubMedCrossRefGoogle Scholar
  2. 2.
    Fozard JR (1984): Neuronal 5-HT receptors in the periphery. Neuropharmacology 23: 1473–1486.PubMedCrossRefGoogle Scholar
  3. 3.
    Richardson BP, Engel G (1986): The pharmacology and function of 5-HT3, receptors. Trends Neurosci 9: 424–428.CrossRefGoogle Scholar
  4. 4.
    Wallis DI, Dun NJ (1989): Presynaptic action of 5-hydroxytryptamine on autonomic ganglia, (in press) in: Feigenbaum JJ, Hanani M (eds), Presynaptic regulation of neurotransmitter release. London and Tel Aviv: Freund Publishing Co.Google Scholar
  5. 5.
    Wallis, DI (1989): Interaction of 5-HT with autonomic and sensory neurones, pp. 220–246 in Fozard JR, (ed), The peripheral actions of 5-hydroxytryptamine. Oxford: Oxford University Press.Google Scholar
  6. 6.
    Wallis DI, North RA (1978): Intracellular recording of responses of rabbit superior cervical ganglion cells to 5-hydroxytryptamine applied by iontophoresis. Neuropharmacology 17: 1023–1028.PubMedCrossRefGoogle Scholar
  7. 7.
    Skok V, Selyanko AA (1979): Acetylcholine and serotonin receptors in mammalian sympathetic ganglion neurones, pp. 248–253 in: Brooks CMcC, Koizumi K, Sato A (eds), Integrative functions of the autonomic nervous system. Tokyo: University of Tokyo Press.Google Scholar
  8. 8.
    Macrae IM, Furness JB, Costa M (1986): Distribution of subgroups of noradrenaline neurones in the coeliac ganglion of the guinea-pig. Cell and Tissue Res 244: 173–180.CrossRefGoogle Scholar
  9. 9.
    Cassell JF, McLachlan EM (1987): Two calcium-activated potassium conductances in a subpopulation of coeliac neurones of guinea-pig and rabbit. J Physiol 394: 331–349.PubMedGoogle Scholar
  10. 10.
    McLachlan EM (1987): Functional specialization of membrane properties of sympathetic post-ganglionic neurones, pp. 1–10 in: Polosa C, Calaresu F (eds), Organization of the Autonomic Nervous System: Central and peripheral mechanisms. New York: Alan Liss.Google Scholar
  11. 11.
    Bradley PB, Engel G, Fenuik W, Fozard J, Humphrey PPA Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–576.PubMedCrossRefGoogle Scholar
  12. 12.
    Trendelenburg U (1956): The action of 5-hydroxytryptamine on the nictitating membrane and on the superior cervical ganglion of the cat. Br J Pharmacol Chemother 11: 74–80.PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    DeGroat WC, Voile RL (1966): The actions of the catecholamines on transmission in the superior cervical ganglion of the cat.J Pharmacol exp Ther 154: 1–13.Google Scholar
  14. 14.
    Haefely W (1974): The effects of 5-hydroxytryptamine and some related compounds on the cat superior cervical ganglion in situ. Naunyn-Schmiedeberg’s Arch Pharmacol 281: 145–165.CrossRefGoogle Scholar
  15. 15.
    DeGroat WC, Lalley PM (1973): Interaction between picrotoxin and 5-hydroxytryptamine in the superior cervical ganglion of the cat. Br J Pharmacol 48: 233–244.PubMedCrossRefGoogle Scholar
  16. 16.
    Wallis DI, Woodward B (1974): The facilitatory actions of 5-hydroxytryptamine and bradykinin in the superior cervical ganglion of the rabbit. Br J Pharmacol 51: 521–531.PubMedCrossRefGoogle Scholar
  17. 17.
    Hertzler EC (1961): 5-hydroxytryptamine and transmission in sympathetic ganglia. Br J Pharmacol Chemother 17:406–413.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Dun NJ, Karczmar AG (1981): Evidence for a presynaptic inhibitory action of 5-hydroxytryptamine in a mammalian sympathetic ganglion. J Pharmacol exp Ther 217: 714–718.PubMedGoogle Scholar
  19. 19.
    Hirai K, Koketsu K (1980): Presynaptic regulation of the release of acetylcholine by 5-hydroxytryptamine. Br J Pharmacol 70: 499–500.PubMedCrossRefGoogle Scholar
  20. 20.
    Elliott P, Marsh SJ, Brown DA (1989): Inhibition of Ca-spikes in rat preganglionic cervical sympathetic nerves by sympathomimetic amines. Br J Pharmacol 96: 65–76.PubMedCrossRefGoogle Scholar
  21. 21.
    Ma RC, Dun NJ (1986): Excitation of lateral horn neurons of the neonatal rat spinal cord by 5-hydroxytryptamine. Developmental Brain Research 24: 89–98.CrossRefGoogle Scholar
  22. 22.
    De Groat WC, Ryall RW (1967): An excitatory action of 5-hydroxytryptamine on sympathetic preganglionic neurones. Exp Brain Res 3: 299–305.PubMedCrossRefGoogle Scholar
  23. 23.
    Coote JH, MacLeod VH, Fleetwood-Walker S, Gilbey MP (1981): The response of individual sympathetic preganglionic neurones to microelectrophoretically applied endogenous monoamines. Brain Res 215: 135–145.PubMedCrossRefGoogle Scholar
  24. 24.
    Kadzielawa K (1983): Antagonism of the excitatory effects of 5-hydroxytryptamine on sympathetic preganglionic neurones and neurones activated by visceral afferents. Neuropharmacology 22: 19–27.PubMedCrossRefGoogle Scholar
  25. 25.
    McCall RB (1983): Serotonergic excitation of sympathetic preganglionic neurones: a microiontophoretic study. Brain Res 289: 121–127.PubMedCrossRefGoogle Scholar
  26. 26.
    Dahlstrom A, Fuxe K (1964): Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brainstem neurons. Acta physiol Scand 62, Suppl. 232: 1–55.Google Scholar
  27. 27.
    Dahlstrom A, Fuxe K (1965): Evidence for the existence of monoamine-containing neurons in the central nervous system. II. Experimentally-induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta physiol Scand 64, Suppl. 247: 1–36.Google Scholar
  28. 28.
    Wallis DI, Woodward B (1975): Membrane potential changes induced by 5-hydroxytryptamine in the rabbit superior cervical ganglion. Br J Pharmacol 55, 199–212.PubMedCrossRefGoogle Scholar
  29. 29.
    Wallis DI, North RA (1978): Intracellular recording of responses of rabbit superior cervical ganglion cells to 5-hydroxytryptamine applied by iontophoresis. Neuropharmacology 17, 1023–1028.PubMedCrossRefGoogle Scholar
  30. 30.
    Ireland SJ, Straughan DW, Tyers MB (1982): Antagonism by metoclopramide and quipazine of 5-hydroxytryptamine-induced depolarizations of the rat isolated vagus nerve. Br J Pharmacol 75: 16 P.Google Scholar
  31. 31.
    Brittain RT, Butler A, Coates H, Fortune DH, Hagan R, Hill JM, Humber DC, Humphrey PPA, Hunter DC, Ireland SJ, Jack D, Jordan CC, Oxford A, Tyers MB (1987): GR 38032F, a novel selective 5-HT3 receptor antagonist. Br J Pharmacol 90: 87 P.Google Scholar
  32. 32.
    Akasu T, Hasuo H, Tokimasa T (1987): Activation of 5-HT3 receptor subtypes causes rapid excitation of rabbit parasympathetic neurones. Br J Pharmacol 91: 453–455.PubMedCrossRefGoogle Scholar
  33. 33.
    Guharay F, Usherwood PNR (1981): Characterisation of the effects of 5-hydroxytrypta- mine on NIE-115 neuroblastoma cells. Br J Pharmacol 74: 294–295 P.Google Scholar
  34. 34.
    Neijt HC, Vijverberg HPM, van den Bercken J (1986): The dopamine response in mouse neuroblastoma cells is mediated by serotonin 5-HT3 receptors. Eur J Pharmacol 127: 271.PubMedCrossRefGoogle Scholar
  35. 35.
    Peters J, Usherwood PNR (1983): 5-hydroxytryptamine responses of murine neuroblastoma cells. Ions and putative antagonists. Br J Pharmacol 80: 532P.Google Scholar
  36. 36.
    Neijt HC, Te Duits IJ, Vijverberg HPM (1988): Pharmacological characterisation of serotonin 5-HT3 receptor-mediated electrical response in cultured mouse neuroblastoma cells. Neuropharmacology 27: 301–307.PubMedCrossRefGoogle Scholar
  37. 37.
    Lambert JJ, Peters JA, Hales TG, Dempster J (1989): The properties of 5-HT3 receptors in clonal cell lines studied by patch-clamp techniques. Br J Pharmacol 97: 27–40.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoyer D, Neijt HC (1988): Identification of serotonin 5-HT3 recognition sites in membranes of NIE-115 neuroblastoma cells by radioligand binding. Mol. Pharmacol 33: 303–309.PubMedGoogle Scholar
  39. Guharay F, Ramsay RL, Usherwood PNR (1985): 5-hydroxytryptamine-activated single- channel currents recorded from murine neuroblastoma cells. Brain Res 340:325–332.PubMedCrossRefGoogle Scholar
  40. 40.
    Machova J, Boska D (1969): The effects of 5-hydroxytryptamine, dimethylphenylpipera-zinium and acetylcholine on transmission and surface potential in the cat sympathetic ganglion. Eur J Pharmacol 7, 152–158.PubMedCrossRefGoogle Scholar
  41. 41.
    Wallis DI, Dun JN (1988): A comparison of fast and slow depolarizations evoked by 5-HT in guinea-pig coeliac ganglion cells in vitro. Br J Pharmacol 93: 110–120.PubMedCrossRefGoogle Scholar
  42. 42.
    Wallis DI, Dun NJ (1987): Fast and slow depolarizing responses of guinea-pig coeliac ganglion cells to 5-hydroxytryptamine. J Auton Nerv System 21: 185–194.CrossRefGoogle Scholar
  43. 43.
    Kiraly M, Ma RC, Dun NJ (1983): Serotonin mediates a slow excitatory potential in mammalian coeliac ganglion. Brain Res 275: 378–383.PubMedCrossRefGoogle Scholar
  44. 44.
    Dun NJ, Kiraly M, Ma RC (1984): Evidence for a serotonin-mediated slow excitatory potential in the guinea-pig coeliac ganglia. J Physiol 351: 61–76.PubMedGoogle Scholar
  45. 45.
    Ireland SJ (1987): Origin of 5-hydroxytryptamine-induced hyperpolarization of the rat superior cervical ganglion and vagus nerve. Br J Pharmacol 92: 407–416.PubMedCrossRefGoogle Scholar
  46. 46.
    Ireland SJ, Jordan CC (1987): Pharmacological characterization of 5-hydroxytryptamine- induced hyperpolarization of the rat superior cervical ganglion. Br J Pharmacol 92: 417–427.PubMedCrossRefGoogle Scholar
  47. 47.
    Akasu T, Kirai K, Koketsu K (1981): 5-hydroxytryptamine controls ACh-receptor sensitivity of bullfrog sympathetic ganglion cells. Brain Res 211:217–220.PubMedCrossRefGoogle Scholar
  48. 48.
    Koketsu K, Akasu T, Miyagawa M, Hirai K (1982): Modulation of nicotinic transmission by biogenic amines in bullfrog sympathetic ganglia. J. Auton Nerv System 6: 47–53.CrossRefGoogle Scholar
  49. 49.
    Nash HL, Wallis DI (1981): Effects of divalent cations on responses of a sympathetic ganglion to 5-hydroxytryptamine and l,l-dimethyl-4-phenyl piperazinium. Br J Pharmacol 73: 759–772.PubMedCrossRefGoogle Scholar
  50. 50.
    Adler-Graschinsky E (1983): Dual presynaptic effects of 5-hydroxytryptamine on peripheral noradrenergic synapses. J Auton Pharmacol 3: 303–315.PubMedCrossRefGoogle Scholar
  51. 51.
    Elliott P, Wallis DI (1988): 5-HT depolarizations of rabbit cervical sympathetic axons: mediation by 5-HT3B receptors? Br J Pharmacol 93:93P.CrossRefGoogle Scholar
  52. 52.
    Elliott P, Wallis DI (1988): The depolarizing action of 5-hydroxytryptamine on rabbit isolated preganglionic cerivcal sympathetic nerves. Naunyn-Schmiedeberg’s Arch Pharmacol 338:608–615.CrossRefGoogle Scholar
  53. 53.
    Fozard JR, Mobarok Ali ATM (1978): Receptors for 5-hydroxytryptamine on the sympathetic nerves of the rabbit heart. Naunyn-Schmiedeberg’s Arch Pharmacol 301: 223–235.CrossRefGoogle Scholar
  54. 54.
    Gyermek L (1962): Action of 5-hydroxytryptamine on the urinary bladder of the dog. Arch Int Pharmacod Ther 87: 137–144.Google Scholar
  55. 55.
    Vanov S (1965): Responses of the rat urinary bladder in situ to drugs and to nerve stimulation. Br J Pharmacol 24: 591–600.Google Scholar
  56. 56.
    Saum WR, De Groat WC (1973): The actions of 5-hydroxytryptamine on the urinary bladder and on vesical autonomic ganglia in the cat. J Pharmacol Exp Ther 185: 70–83.PubMedGoogle Scholar
  57. 57.
    Saxena PR, Heiligers J, Mylecharane EJ, Tio R (1985): Excitatory 5-hydroxytryptamine receptors in the cat urinary bladder are of the M- and 5-HT2 type. J Auton Pharmacol 5: 101–107.PubMedCrossRefGoogle Scholar
  58. 58.
    Tatsumi H, Katayama Y (1987): The actions of 5-hydroxytryptamine in the rabbit ciliary ganglion. J Auton Nerv System 20: 137–145.CrossRefGoogle Scholar
  59. 59.
    Burnstock G, Cocks T, Crowe R, Kasakov K (1978): Purinergic innervation of the guinea-pig urinary bladder. Br J Pharmacol 63: 125–138.PubMedCrossRefGoogle Scholar
  60. 6.
    Aas P (1983): Serotonin-induced release of acetylcholine from neurons in the bronchial smooth muscle of the rat. Acta physiol Scand 117: 477–480.PubMedCrossRefGoogle Scholar
  61. 61.
    Fozard JR (1984): MDL 72222: A potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 326: 36–44.CrossRefGoogle Scholar
  62. 62.
    Holt SE, Cooper M, Wyllie JH (1986): On the nature of the receptor mediating the action of 5-hydroxytryptamine in potentiating responses of the mouse urinary bladder strip to electrical stimulation. Naunyn-Schmiedeberg’s Arch Pharmacol 334: 333–340.CrossRefGoogle Scholar
  63. 63.
    Garattini S, Valzelli L (1965): Serotonin. Elsevier, Amsterdam.Google Scholar
  64. 64.
    Franzen F, Eysell K (1969): Biologically active amines found in man. Pergamon, Oxford.Google Scholar
  65. 65.
    Fozard JR (1985): “Vascular neuroeffector mechanisms”, pp. 321. Elsevier, Amsterdam.Google Scholar
  66. 66.
    Johnson AR, Erdos EG (1973): Release of histamine from mast cells by vasoactive peptides. Proc Soc Exp Biol and Med 142: 1252–1256.CrossRefGoogle Scholar
  67. 67.
    Verhofstad AAJ, Steinbusch HWM, Penke B, Varga J, Joosten HWJ (1981): Serotonin- immunoreactive cells in the superior cervical ganglion of the rat. Evidence for the existence of separate serotonin- and catecholamine-containing small ganglionic cells. Brain Res 212: 39–49.PubMedCrossRefGoogle Scholar
  68. 68.
    Neel DS, Parsons RL (1986): Catecholamine, serotonin and substance P-like peptide containing intrinsic neurones in the mud puppy parasympathetic cardiac ganglion. J Neurosci 6: 1970–1975.PubMedGoogle Scholar
  69. 69.
    Moskowitz MA, Reinhard JF, Romero J, Melamed E, Pettibone DJ (1979): Neurotransmitters and the fifth cranial nerve. Is there a relation to the headache phase of migraine? Lancet ii, 883–885.Google Scholar
  70. 70.
    Jule Y, Krier J, Szurszewski JH (1983): Patterns of innervation of neurones in the inferior mesenteric ganglion of the cat.J Physiol 344: 293–304.Google Scholar
  71. 71.
    Engel G, Gothert M, Müller-Schweinitzer E, Schlicker E, Sistonen L, Stadler PA (1983): Evidence for common pharmacological properties of [3H] 5-hydroxytryptamine binding sites, presynaptic 5-hydroxytryptamine autoreceptors in CNS and inhibitory presynaptic 5-hydroxytryptamine receptors on sympathetic nerves. Naunyn Schmiedeberg’s Arch Pharmacol 324: 116–124.CrossRefGoogle Scholar
  72. 72.
    Charlton KG, Bond RA, Clarke DE (1986): An inhibitory prejunctional 5-hydroxytrypta-mine-l-like receptor in the isolated perfused rat kidney; apparent distinction from the 5-hydroxytryptamine-lA, 5-hydroxytryptamine-IB and 5-hydroxytryptamine-lC subtypes. Naunyn-Schmiedeberg’s Arch Pharmacol 332: 8–15.CrossRefGoogle Scholar
  73. 73.
    Fozard JR, Kilbinger H (1985): 8-OH-DPAT inhibits transmitter release from guinea-pig enteric cholinergic neurones by activating 5-HT1A receptors. Br J Pharmacol 86:60IP.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • D. I. Wallis
  • P. Elliott

There are no affiliations available

Personalised recommendations