Advertisement

Central neuronal responses and 5-hydroxytryptamine receptors

  • M. H. T. Roberts
  • M. Davies
Chapter
Part of the Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine book series (DICM, volume 106)

Abstract

Most evidence for a role of 5-hydroxytryptamine (5-HT) in hypertension points to an action on the blood vessel wall [1] but many compounds acting on 5-HT receptors also penetrate the blood-brain barrier and central neuronal receptors to 5-HT significantly affect sympathetic outflows [2, 3]. Undoubtedly, the central actions at 5-HT receptors of some antihypertensive agents are of relevance to their therapeutic actions. Until recently the actions of 5-HT on central neurones have been ill defined and controversial due to the lack of a proper framework of receptor definition and a lack of drugs which discriminate between receptor types. Selective agonists and antagonists have been developed in the last decade and the proposed classification of 5-HT receptor types by Bradley et al. [4] has enabled studies of central functional receptors to 5-HT. However, lack of selective antagonists at the 5-HT1-like receptor continues to inhibit proper definition of 5-HT actions in the CNS.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vanhoutte PM, Luescher TF (1986): Serotonin and the blood vessel wall. J Hypertension 4 (suppl 1):S29–S35.Google Scholar
  2. 2.
    Chalmers JP, Pilowski PM, Minson JB, Kapoor V, Mills E, West MJ (1988): Central serotonergic mechanisms in hypertension. Am J Hypertension 1: 79–83.CrossRefGoogle Scholar
  3. 3.
    Ramage AG, Fozard JR (1987): Evidence that the putative 5HT 1A receptor agonists, 8-OH-DPAT and ipsapirone, have a central hypotensive action that differs from that of clonidine in anaesthetised cats. Eur J Pharmacol 138:179–191. 8-OH-DPAT and ipsapirone, have a central hypotensive action that differs from that of clonidine in anaesthetised cats. Eur J Pharmacol 138: 179–191.PubMedCrossRefGoogle Scholar
  4. 4.
    Bradley PB, Engel G, Feniuk W, Fozard J, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986): Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–576.PubMedCrossRefGoogle Scholar
  5. 5.
    Krnjevic K, Phillis JW (1963): Actions of certain amines on cerebral cortical neurones. Br J Pharmacol Chemother 20: 471–490.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Roberts MHT, Straughan DW (1967): Excitation and depression of cortical neurones by 5 Hydroxytryptamine. J Physiol (Lond). 193: 269–294.Google Scholar
  7. 7.
    Johnson ES, Roberts MHT, Straughan DW (1969): The responses of cortical neurones to monoamines under differing anaesthetic conditions. J Physiol (Lond) 203: 261–280.Google Scholar
  8. 8.
    Gaddum JH, Picarelli ZP (1957): Two kinds of tryptamine receptor. Br J Pharmac Chemother 12: 323–328.CrossRefGoogle Scholar
  9. 9.
    Bradshaw CM, Roberts MHT, Szabadi E (1974): Effects of imipramine and desipramine on the responses of single cortical neurones to noradrenaline and 5 Hydroxytryptamine. Br J Pharmacol 52: 349–358.PubMedCrossRefGoogle Scholar
  10. 10.
    Szabadi E, Bradshaw CM, Bevan P (1977): Excitatory and depressant neuronal responses to noradrenaline, 5-hydroxytryptamine and mescaline: the role of the baseline firing rate. Brain Res 126: 580–583.PubMedCrossRefGoogle Scholar
  11. 11.
    Jones, RSG, Roberts MHT (1979): Potentiation of responses to monoamines by antidepressants after destruction of monoamine afferents. Br J Pharmacol 65: 501–510.PubMedCrossRefGoogle Scholar
  12. 12.
    Jones RSG, Boulton AA (1980): Tryptamine and 5-hydroxytryptamine: actions andinteractions on cortical neurons in the rat. Life Sci 27: 1849–1856.PubMedCrossRefGoogle Scholar
  13. 13.
    Bradshaw CM, Stoker MJ, Szabadi E (1983): Comparison of neuronal responses to 5-Hydroxytryptamine, noradrenaline and phenylephrine in the cerebral cortex: effects of haloperidol and methysergide. Neuropharmacology 22: 677–683.PubMedCrossRefGoogle Scholar
  14. 14.
    Boakes RJ, Bradley PB, Briggs I, Dray A (1970): Antagonism of 5-hydroxytryptamine by LSD-25 in the central nervous system: a possible basis for the actions of LSD–25. Br J Pharmacol 40: 202–218.PubMedCrossRefGoogle Scholar
  15. 15.
    Couch JR (1970): Responses of neurons in the raphe nuclei to serotonin, norepinephrine and acetylcholine and their correlation with an excitatory synaptic input. Brain Res 19: 137–150.PubMedCrossRefGoogle Scholar
  16. 16.
    Couch JR (1976): Further evidence for a possible excitatory serotonergic synapse on raphe neurons of pons and lower midbrain. Life Sci 19: 761–768.PubMedCrossRefGoogle Scholar
  17. 17.
    Hosli L, Tebecis AK, Schonwetter HP (1970): Monoamines, LSD and brain stem reticular neurones. Experientia 26: 7.CrossRefGoogle Scholar
  18. 18.
    Bradley PB, Briggs, I (1974): Further studies on the mode of action of psychotomimetic drugs: antagonism of the excitatory actions of 5-hydroxytryptamine by methylated derivatives of tryptamine. Br J Pharmacol 50: 345–354.PubMedCrossRefGoogle Scholar
  19. 19.
    Llewelyn MB, Azami J, Roberts MHT (1983): Effects of 5-Hydroxytryptamine applied into nucleus raphe magnus on nociceptive thresholds and neuronal firing rate. Brain Res 258: 59–68.PubMedCrossRefGoogle Scholar
  20. 20.
    Tebecis AK (1970): Effects of monoamines and amino acids on medial geniculate neurones of the cat. Neuropharmacology 9: 381–391.PubMedCrossRefGoogle Scholar
  21. 21.
    York DH (1970): Possible dopaminergic pathway from substantia nigra to putamen. Brain Res 20: 233–247.PubMedCrossRefGoogle Scholar
  22. 22.
    Belcher G, Ryall RW, Schaffner R (1978): The differential effects of 5-Hydroxytryptamine, noradrenaline, and raphe stimulation on nociceptive and non-nociceptive dorsal horn interneurones in the cat. Brain Res 151: 307–321.PubMedCrossRefGoogle Scholar
  23. 23.
    McCall RB (1983): Serotonergic excitation of sympathetic preganglionic neurones: a microiontophoretic study. Brain Res 289: 121–127.PubMedCrossRefGoogle Scholar
  24. 24.
    Haigler HJ, Aghajanian GK (1974): Lysergic acid diethylamide and serotonin: a comparison of effects on serotonergic neurons and neurons receiving a serotonergic input. J Pharm Exp Ther 18:688–699.Google Scholar
  25. 25.
    Haigler HJ, Aghajanian GK (1974): Peripheral serotonin antagonists: failure to antagonise serotonin in brain areas receiving a prominent serotonergic input J Neural Trans 35: 257–273.CrossRefGoogle Scholar
  26. 26.
    Haigler HJ, Aghajanian GK (1977): Serotonin receptors in brain. Fed Proc 36: 2159–2164.PubMedGoogle Scholar
  27. 27.
    Segal M (1976): 5-HT antagonists in rat hippocampus. Brain Res 103:161–166.PubMedCrossRefGoogle Scholar
  28. 28.
    Wang RY, Aghajanian GK (1977): Inhibition of neurones in the amygdala by dorsal raphe stimulation: mediation through a direct serotonergic pathway. Brain Res 120: 85–102.PubMedCrossRefGoogle Scholar
  29. 29.
    Blier P, de Montigny C (1983): Effects of quipazine on pre- and postsynaptic serotonin receptors: single cell studies in the rat CNS. Neuropharm 22: 495–499.CrossRefGoogle Scholar
  30. 30.
    Barasi S, Roberts MHT (1974): The modification of lumbar motoneurone excitability by stimulation of a putative 5-Hydroxytryptamine pathway. Br J Pharmacol 52: 339–348.PubMedCrossRefGoogle Scholar
  31. 31.
    McCall RB, Aghajanian GK (1979): Serotonergic facilitation of facial motoneuron excitation. Brain Res 169: 11–27.PubMedCrossRefGoogle Scholar
  32. 32.
    McCall RB, Aghajanian GK (1980): Pharmacological characterization of serotonin receptors in the facial motor nucleus: a microiontophoretic study. Eur J Pharmacol 65: 175–183.PubMedCrossRefGoogle Scholar
  33. 33.
    Parry O, Roberts MHT (1980): Responses of motoneurones to 5-Hydroxytryptamine. Neuropharmacology 19: 515–518.PubMedCrossRefGoogle Scholar
  34. 34.
    White SR, Neuman RS (1980): Facilitation of spinal motoneurone excitability by 5-hydroxytryptamine and noradrenaline. Brain Res 188: 119–127.PubMedCrossRefGoogle Scholar
  35. 35.
    Bennett JL, Aghajanian GK (1974): d-LSD binding to rat brain homogenates: a possible relationship to serotonin receptors. Life Sci 15:1935’1944.PubMedCrossRefGoogle Scholar
  36. 36.
    Bennett JP, Snyder SH (1976): Serotonin and lysergic acid diethylamide binding in rat brain membranes. Relationship to post synaptic serotonin receptors. Molec Pharmacol 12: 373–389.Google Scholar
  37. 37.
    Peroutka SJ, Snyder SH (1979): Multiple serotonin receptors: Differential binding of [3H] 5-hydroxytryptamine, [3H] lysergic acid diethylamide and [3H] spiroperidol. Molec Pharmacol 16: 687–699.Google Scholar
  38. 38.
    Leysen JE, Awouters F, Kennis L, Laduron PM, Vandenberg J, Janssen PAJ (1981): Receptor binding profile of R 41 468, a novel antagonist at 5-HT receptors. Life Sci 28: 1015–1022.PubMedCrossRefGoogle Scholar
  39. 39.
    Engel G, Gothert M, Hoyer D, Schlicker E, Hillenbrand K (1986): Identity of inhibitory presynaptic 5-hydroxytryptamine (5HT) autoreceptors in the rat brain cortex with 5HT1B binding sites. Nauynyn-Schmiedeberg’s Arch Pharmacol 322: 1–7.CrossRefGoogle Scholar
  40. 40.
    Green AR, Hall JE, Rees AR (1981): A behavioural study in rats of 5-hydroxytryptamine receptor agonists and antagonists, with observations on structure-activity requirements for the agonists. Br J Pharmacol 73: 703–719.PubMedCrossRefGoogle Scholar
  41. 41.
    Pedigo NW, Yamamura HI, Nelson DL (1981): Discrimination of multiple 3H 5-hydroxytryptamine binding sites in rat brain by neuroleptics. J Neurochem 36: 220–226.PubMedCrossRefGoogle Scholar
  42. 42.
    Deshmukh PP, Nelson DL, Yamamura HI (1982): Localisation of 5HT1 receptor subtypes in rat brain by autoradiography. Fed Proc 41: 6238.Google Scholar
  43. 43.
    Pazos A, Hoyer D, Palacios JM (1984): The binding of serotonergic ligands to the porcine choroid plexus: characterisation of a new type of serotonin recognition site. Eur J Pharmacol 106: 539–546.PubMedCrossRefGoogle Scholar
  44. 44.
    Hoyer D, Engel G, Kalkman HO (1985): Molecular pharmacology of 5HT 1 and 5HT 2 recognition sites in rat and pig brain membranes: Radioligand binding studies with [3H]5HT, [3H]8-OH-DPAT, (—)[125 I]iodocyanopindolol, [3H]mesulergine and [3H]ketanserin. European J Pharmacol 118: 13–23.CrossRefGoogle Scholar
  45. 45.
    Hoyer D, Pazos A, Probst A, Palacios JM (1986): Serotonin receptors in the human brain. 1 Characterisation and autoradiographic localisation of 5HT 1A sites. Apparant absence of 5HT 1B sites. Brain Res 376: 85–96.PubMedCrossRefGoogle Scholar
  46. 46.
    Kilpatrick GJ, Jones BJ, Tyers MB (1987): Identification and distribution of 5HT 3 receptors in rat brain using radioligand binding. Nature 330: 746–748.PubMedCrossRefGoogle Scholar
  47. 47.
    Jones BJ, Oakey NR, Tyers MB (1987): The anxiolytic activity of GR 38032F, a 5HT 3 receptor antagonist in the rat and cynomolgus monkey. Br J Pharmacol 90: 90 P.Google Scholar
  48. 48.
    Carmichael J, Cantwell BMJ, Edwards CM, Rapeport WG, Harris AL (1988): The serotonin type 3 receptor antagonist BRL 43694 and nausea and vomiting induced by cisplatin. Br Med J 297: 110–111.CrossRefGoogle Scholar
  49. 49.
    Andrews PLR, Hawthorn J (1987): Evidence for an extra–abdominal site of action for the 5HT 3 receptor antagonist BRL 24924 in the inhibition of radiation-evoked emesis in the ferret. Neuropharmacology 26: 1367–1370.PubMedCrossRefGoogle Scholar
  50. 50.
    Costall B, Domeny AM, Gunning SJ, Nayor RJ, Tatersall FD, Tyers MB (1987). GR 38032F: a potent and novel inhibitor of cisplatin-induced emesis in the ferret. Br J Pharmacol 90: 90 P.Google Scholar
  51. 51.
    Aghajanian GK (1981): The modulatory role of serotonin at multiple receptors in brain, pp. 156–185 in: Jacobs BL, Gelperin A (eds), Serotonin neurotransmission and behaviour. Cambridge: MIT Press.Google Scholar
  52. 52.
    Bevan P, Bradshaw CM, Roberts MHT, Szabadi E (1973): Effects of pH on the release of noradrenaline from micropipettes. Jpharm Pharmac 25: 1007–1008.CrossRefGoogle Scholar
  53. 53.
    Briggs I (1977): Excitatory responses of neurones in rat bulbar reticular formation to bulbar raphe stimulation and to iontophoretically applied 5-hydroxytryptamine and their blockade by LSD-25. J Physiol 265: 327–340.PubMedGoogle Scholar
  54. 54.
    Jones RSG (1982): Responses of cortical neurones to stimulation of nucleus raphe medianus: a pharmacological analysis of the role of indoleamines. Neuropharmacology 21: 511–520.PubMedCrossRefGoogle Scholar
  55. 55.
    Jones RSG, Broadbent J (1982): Differential effects of fluoxetine and zimelidine on the uptake of 5-hydroxytryptamine and tryptamine by cortical slices and on responses of cortical neurones to stimulation of the nucleus raphe medianus. Eur J Pharmacol 81: 681–685.PubMedCrossRefGoogle Scholar
  56. 56.
    Jones RSG, Broadbent J (1982): Further studies on the role of indoleamines in the responses of cortical neurones to stimulation of nucleus raphe medianus: effects of indoleamine precursor loading. Neuropharmacology 21: 1273–1277.PubMedCrossRefGoogle Scholar
  57. 57.
    Park MR, Gonzales-Vegas JA, Kitai ST (1982): Serotonergic excitation from dorsal raphe stimulation recorded intracellular from rat caudate-putamen. Brain Res 243: 49–58.PubMedCrossRefGoogle Scholar
  58. 58.
    Davies M, Wilkinson LS, Roberts MHT (1988) Evidence for excitatory 5-HT 2 receptors on rat brainstem neurones. Br J Pharmacol 94: 483–491.CrossRefGoogle Scholar
  59. 59.
    Davies M, Wilkinson LS, Roberts MHT (1988): Evidence for depressant 5HT 1-like receptors on rat brainstem neurones. Br J Pharmacol: 94: 492–499.PubMedCrossRefGoogle Scholar
  60. 60.
    Roberts M, Davies M, Girdlestone D, Foster GA (1988): Spinal motoneurone responses to stimulation of raphe obscurus, application of 5-hydroxytryptamine (5HT) and 5HT receptor agonists and antagonists. Brit J Pharmacol 95: 437–448.CrossRefGoogle Scholar
  61. 61.
    Montigny, C de, Aghajanian GK (1977): Preferential action of 5-methoxytryptamine and 5-methoxydimethyltryptamine on presynaptic serotonin receptors: a comparative ionto-phoretic study with LSD and serotonin. Neuropharmacology 16: 811–815.CrossRefGoogle Scholar
  62. 62.
    Yarborough GG, Singh DK, Pettibone DJ (1984): A comparative electrophysiological and biochemical assessment of serotonin (5–HT) and a novel 5–HT agonist (MK–212) on central serotonergic receptors. Neuropharmacology 23: 1271–1277.CrossRefGoogle Scholar
  63. 63.
    Paterson I (1985): The actions of Beta carbolines on single neurones in the central nervous system. PhD thesis. University of Wales.Google Scholar
  64. 64.
    Fozard JR (1984): MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn-Schmiedeberg’s Arch Pharmacol 326: 36–44.CrossRefGoogle Scholar
  65. 65.
    Feniuk, W, Humphrey PPA, Perren MJ, Watts AD (1985): A comparison of 5-hydroxy-tryptamine receptors mediating contraction in rabbit aorta and dog saphenous vein: evidence for different receptor types obtained by use of selective agonists and antagonists. Br J Pharmacol 86: 697–704.PubMedCrossRefGoogle Scholar
  66. 66.
    Lakoski JM, Aghajanian GK (1985): Effects of ketanserin on neuronal responses to serotonin in the prefrontal cortex, lateral geniculate and dorsal raphe nucleus. Neuropharmacology 24: 265–273.PubMedCrossRefGoogle Scholar
  67. 67.
    Mason R (1985): Characterisation of 5HT sensitive neurones in the rat CNS using iontophoresed 8-OH-DPAT and ketanserin. Br J Pharmacol 86: 433 P.Google Scholar
  68. 68.
    Sastry BSR, Phillis JW (1977): Metergoline as a selective 5-hydroxytryptamine antagonist in the cerebral cortex. Can J Pharmac 55: 130–135.CrossRefGoogle Scholar
  69. 69.
    Jones RSG (1982): A comparison of the responses of cortical neurons to iontophoretically applied tryptamine and 5-hydroxytryptamine in the rat. Neuropharmacology 21, 209–214.PubMedCrossRefGoogle Scholar
  70. 70.
    Connell LA, Wallis DI (1988): Responses to 5-hydroxytryptamine evoked in the hemisected spinal cord of the neonate rat. Br J Pharmacol 94: 1101–1114.PubMedCrossRefGoogle Scholar
  71. 71.
    Connell LA, Wallis DI (1989): 5-hydroxytryptamine depolarises neonatal rat motoneurones via a receptor unrelated to an identified binding site. Neuropharmacology 28: 625–634.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • M. H. T. Roberts
  • M. Davies

There are no affiliations available

Personalised recommendations