Advertisement

The distribution and biochemistry of 5-hydroxytryptamine in the cardiovascular system

  • Tony J. Verbeuren
Chapter
Part of the Developments in CardioCardiovascular Pharmacology of 5-Hydroxytryptamine book series (DICM, volume 106)

Abstract

In most plants and animals, significant levels of 5-HT are present. In mammals, the enterochromaffin cells of the gastrointestinal mucosa, the brain, the pineal gland and the platelets contain important concentrations of 5-HT. The indoleamine has also been detected in peripheral nerves of the gut, in lung, kidney, spleen, thyroid, mast cells, heart and blood vessels of different species. It is well accepted that 5-HT has a role as a neurotransmitter in the brain and as a precursor of melatonin in the pineal gland; its precise function in the other tissues in which it is present has yet to be elucidated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Verbeuren TJ (1989): Synthesis, storage, release and metabolism of 5-HT in peripheral tissues, pp. 1–25 in: Fozard JR (ed), Peripheral actions of 5-hydroxytryptamine. Oxford University Press.Google Scholar
  2. 2.
    Tyce GM (1985): Biochemistry of serotonin, pp. 1–14 in: Vanhoutte PM (ed), Serotonin and the cardiovascular system. New York: Raven Press.Google Scholar
  3. 3.
    Johnston JP (1968): Some observations upon a new inhibitor of monoamine oxidase in brain tissue. Biochem Pharmacol 17: 1285–1297.PubMedCrossRefGoogle Scholar
  4. 4.
    Knoll J, Magyar K (1972): Some puzzling pharmacological effects of monoamine oxidase inhibitors. Adv Biochem Psychopharmacol 5: 393–408.PubMedGoogle Scholar
  5. 5.
    Verbeuren TJ, Vanhoutte PM (1982): Deamination of released 3H-norepinephrine in the canine saphenous vein. Naunyn-Schmiedeberg’s Arch Pharmacol 318: 148–157.CrossRefGoogle Scholar
  6. 6.
    Axelrod J (1974): The pineal gland: a neurochemical transducer. Science 184: 1341–1348.PubMedCrossRefGoogle Scholar
  7. 7.
    Vanhoutte PM (1982): Does 5-hydroxytryptamine play a role in hypertension? Trends Pharmacol Sci 3: 370–373.CrossRefGoogle Scholar
  8. 8.
    Gillis CN (1985): Peripheral metabolism of serotonin, pp. 27–36 in: Vanhoutte PM (ed), Serotonin and the cardiovascular system. New York: Raven Press.Google Scholar
  9. 9.
    Beauvallet M, Godefroy F, Weil-Fugazza J (1968): Modification de la teneur en 5-hydroxytryptamine du coeur au cours d’une surcharge de régime en chlorure de sodium. CRS de la Soc de Biol Fil(Paris) 162: 2085–2088.Google Scholar
  10. 10.
    Madan BR, Khanna NK, Godhwani JL, Pendse VK (1970): Changes in the 5-hydroxytryptamine content of the heart during ectopicventricular arrhythmias and consequent to its reversion by quinidine. Ind J Med Res 58: 130–134.Google Scholar
  11. 11.
    Votavova M, Boullin DJ, Costa E (1971): Specificity of action of 6-hydroxydopamine in peripheral cat tissues: depletion of noradrenaline without depletion of 5-hydroxytrypta- mine. Life Sci 10: 87–91.CrossRefGoogle Scholar
  12. 12.
    Berkowitz BA, Lee CH, Spector S (1974): Disposition of serotonin in the rat blood vessels and heart. Clin Exp Pharmacol Physiol 1: 397–400.CrossRefGoogle Scholar
  13. 13.
    Jarrott B, McQueen A, Graf L, Louis WJ (1975): Serotonin levels in vascular tissue and the effects of a serotonin synthesis inhibitor on blood pressure in hypertensive rats. Clin Exp Pharmacol Physiol(suppl) 2: 201–205.PubMedGoogle Scholar
  14. 14.
    Sole MJ, Shum A, Van Loon GR (1979): Serotonin: metabolism in the normal and failing heart. Circ Res 45: 629–634.PubMedCrossRefGoogle Scholar
  15. 15.
    Kalsner S, Richards R (1984): Coronary arteries of cardiac patients are hyperreactive and contain stores of amines: a mechanism for coronary spasm. Science 223: 1435–1437.PubMedCrossRefGoogle Scholar
  16. 16.
    Niwa M, Kunisada K, Himeno A, Kawaguchi A, Ozaki M (1984): 5-hydroxytryptamine content in the rat heart: quantitation by high-performance liquid chromatographic electrochemical detection. Jap J Pharmacol 34: 264–267.PubMedCrossRefGoogle Scholar
  17. 17.
    Edvinsson L, Birath E, Uddman R, Lee TJF, Duverger D, MacKenzie ET, Scatton B (1984): Indoleaminergic mechanisms in brain vessels: localization, concentration, uptake and in vitro responses of 5-hydroxytryptamine. Acta Physiol Scand 121: 291–299.PubMedCrossRefGoogle Scholar
  18. 18.
    Ozaki M, Himeno A, Uchida S, Ohta H, Niwa M (1986): Accelerated uptake of serotonin in mesenteric arteries of young spontaneously hypertensive rats. J Hypertension 4: S227– S228.Google Scholar
  19. 19.
    Levitt B, Duckies SP (1986): Evidence against serotonin as a vasoconstrictor neurotransmitter in the rabbit basilar artery. J Pharmacol Exp Ther 238: 880–885.PubMedGoogle Scholar
  20. 20.
    Cohen RA, Zitnay KM, Weisbrod RM (1987): Accumulation of 5-hydroxytryptamine leads to dysfunction of adrenergic nerves in canine coronary artery following intimal damage in vivo. Circ Res 61: 829–833.PubMedCrossRefGoogle Scholar
  21. 21.
    Griffith SG, Lincoln J, Burnstock G (1982): Serotonin as a neurotransmitter in cerebral arteries. Brain Res 247: 388–392.PubMedCrossRefGoogle Scholar
  22. 22.
    Griffith SG, Burnstock G (1983): Immunohistochemical demonstration of serotonin nerves supplying human cerebral and mesenteric blood vessels. Lancet 1983/1: 561–562.PubMedCrossRefGoogle Scholar
  23. 23.
    Chang JY, Owman Ch (1986): Immunohistochemical and pharmacological studies on serotonergic nerves and receptors in brain vessels. Acta Physiol Scand 127 (suppl) 552: 49–53.Google Scholar
  24. 24.
    Chang JY, Hardebo JE, Owman Ch, Svendgaard Aa N (1987): Nerves containing serotonin, its interaction with noradrenaline, anc characterization of serotonin receptors in arteries of monkey. J Auton Pharmac 7: 317–329.CrossRefGoogle Scholar
  25. 25.
    Jackowski A, Crockard A, Burnstock G (1988): Ultrastructure of serotonin-containing nerve fibres in the middle cerebral artery of the rat and evidence for its localisation within catecholamine-containing nerve fibres by immunoelectron microscopy. Brain Res 443: 159–165.PubMedCrossRefGoogle Scholar
  26. 26.
    Maruki C, Spatz M, Ueki Y, Nagatsu I, Bembry J (1984): Cerebrovascular endothelial cell culture: metabolism and synthesis of 5-hydroxytryptamine. J Neurochem 43: 316–319.PubMedCrossRefGoogle Scholar
  27. 27.
    Starling EH, Verney EG (1925): The secretion of urine as studied on the isolated kidney. Proc Royal Soc London 97: 321–363.CrossRefGoogle Scholar
  28. 28.
    Junod AF (1975): Metabolism, production and release of hormones and mediators in the lung. Am Rev Resp Dis 112: 93–108.PubMedGoogle Scholar
  29. 29.
    Small R, Macarak E, Fisher AB (1976): Production of 5-hydroxyindoleacetic acid from serotonin by cultured endothelial cells. J Cell Physiol 90: 225–232.CrossRefGoogle Scholar
  30. 30.
    Junod AF, Ody C (1977): Amine uptake and metabolism by endothelium of pig pulmonary artery and aorta. Am J Physiol 232: C88– C94.Google Scholar
  31. 31.
    Spatz M, Maruki C, Abe T, Rausch WD, Abe K, Merkel N (1981): The uptake and fate of the radiolabeled 5-hydroxytryptamine in isolated cerebral microvessels. Brain Res 220: 214–219.PubMedCrossRefGoogle Scholar
  32. 32.
    Fukuda S, Su C, Lee TJ-F (1986): Extraneuronal serotonin accumulation in peripheral arteries of the rat. Experientia 42: 1244–1245.PubMedCrossRefGoogle Scholar
  33. 33.
    Roth RA, Gillis CN (1975): Mutiple forms of amine oxidase in perfused rabbit lung. J Pharmacol Exp Ther 194: 537–544.PubMedGoogle Scholar
  34. 34.
    Crooks PA, Dreyer RN, Sulens CH, Gillis CN, Coward JK (1979): Deamination of 5- hydroxytryptamine metabolites in isolate perfused rabbit lung by high-performance liquid chromatography. Anal Biochem 93: 143–152.PubMedCrossRefGoogle Scholar
  35. 35.
    Verbeuren TJ, Jordaens FH, Herman AG (1983): Accumulation and release of [3H]5- hydroxytryptamine in saphenous veins and cerebral arteries of the dog. J Pharmacol Exp Ther 226: 579–588.PubMedGoogle Scholar
  36. 36.
    Verbeuren TJ, Jordaens FH, Bult H, Herman AG (1988): The endothelium inhibits the penetration of serotonin and norepinephrine in the isolated canine saphenous vein. J Pharmacol Exp Ther 244: 276–282.PubMedGoogle Scholar
  37. 37.
    Paiva MQ, Caramona M, Osswald W (1984): Intra—and extraneuronal metabolism of 5-hydroxytryptamine in the isolated saphenous vein of the dog. Naunyn-Schmiedeberg’s Arch Pharmacol 325: 62–68.CrossRefGoogle Scholar
  38. 38.
    Cohen RA (1985): Platelet-induced neurogenic coronary contractions due to accumulation of the false neurotransmitter, 5-hydroxytryptamine. J Clin Invest 75: 286–292.PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Fukuda S, Su C, Lee TJ-F (1986): Mechanisms of extraneuronal sertonin uptake in the rat aorta. J Pharmacol Exp Ther 239: 264–269.PubMedGoogle Scholar
  40. 40.
    Thoa NB, Eccleston D, Axelrod J (1969): The accumulation of C14-serotonin in the guinea-pig vas deferens. J Pharmacol Exp Ther 169: 68–73.PubMedGoogle Scholar
  41. 41.
    Jaim-Etcheverry G, Zieher LM (1971): Ultrastructural cytochemistry and pharmacology of 5-hydroxytryptamine in adrenergic nerve endings. III. Selective increase of norepinephrine in the rat pineal gland consecutive to depletion of neuronal 5-hydroxytryptamine. J Pharmacol Exp Ther 178: 42–48.PubMedGoogle Scholar
  42. 42.
    Owman C (1964): Sympathetic nerves probably storing two types of monoamines in the rat pineal gland. Int J Neuropharmacol 2: 105–112.CrossRefGoogle Scholar
  43. 43.
    McGrath MA (1977): 5-hydroxytryptamine and neurotransmitter release in canine blood vessels. Circ Res 41:428–435.PubMedCrossRefGoogle Scholar
  44. 44.
    Starke K, and Weitzell R (1978): Is histamine involved in the sympathominetic effect of nicotine? Naunyn-Schmiedeberg’s Arch Pharmacol 304: 237–248.CrossRefGoogle Scholar
  45. 45.
    Curro FA, Greenberg S, Verbeuren TJ, and Vanhoutte PM (1978): Interaction between alpha-adrenergic and serotonergic activation of canine saphenous veins. J Pharmacol Exp Ther 207: 936–949.PubMedGoogle Scholar
  46. 46.
    Vanhoutte PM, Verbeuren TJ, Webb RC (1981): Local modulation of the adrenergic neuroeffector interaction in the blood vessel wall. Physiol Rev 61:151–247.PubMedGoogle Scholar
  47. 47.
    Kawasaki H, Takasaki K (1984): Vasoconstrictor response induced by 5-hydroxytrypta- mine released from vascular adrenergic nerves by periarterial nerve stimulation. J Pharmacol Exp Ther 229: 816–822.PubMedGoogle Scholar
  48. 48.
    Kawasaki H, Takasaki K (1986): Pharmacological characterization of presynaptic alpha- adrenoceptors in the modulation of the 5-hydrotryptamine release from vascular adrenergic nerves in the rat. Jap J Pharmacol 42: 561–570.PubMedCrossRefGoogle Scholar
  49. 49.
    Verbeuren TJ, Zonnekeyn LL, Jordaens FH, Herman AG (1986): Effects of iskedyl and its two constituents raubasine and dihydroergocristine on the release of [3H] noradrenaline and [3H] serotonin in canine basilar arteries. Eur J Pharmacol 125: 1–10.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1990

Authors and Affiliations

  • Tony J. Verbeuren

There are no affiliations available

Personalised recommendations