The Butcher-Oemler Effect in Nearby Clusters

  • R. M. Sharples
Conference paper
Part of the International Astronomical Union / Union Astronomique Internationale book series (IAUS, volume 171)


Probably the most striking evidence for galaxy evolution at recent epochs has been the discovery of a rapid change in the nature of galaxy populations in clusters over the redshift range z=0 to z=0.5. The ‘classical’ Butcher-Oemler effect (Butcher & Oemler 1978, 1984) used photomteric studies to reveal an unexpected increase in the fraction of blue galaxies in the cores of distant (z ~ 0.4) rich concentrated clusters when compared with nearby (z< 0.05) clusters of similarly high richness and central concentration. An alternative view, based on spectroscopic studies (Dressler & Gunn 1982; Couch & Sharpies 1987), manifests itself as an increase in the fraction of active galaxies which show signs of recent star formation and/or nuclear activity. Some of these galaxies are indeed blue but some (e.g. in C10016+16, Dressler & Gunn 1992) are red. Although it is the very absence of blue galaxies in nearby clusters which defines the classical Butcher-Oemler effect, comparable spectroscopic studies of nearby cluster populations with the appropriate completeness and high signal-to-noise required for population (as opposed to dynamical) studies have only recently been undertaken. In at least one case these have revealed unexpected similarities to the spectroscopic signatures which appear so prevalent at higher redshifts.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bower, R.G., Ellis, R.S., Rose, J. A. and Sharpies, R.M. (1990) AJ, Vol. no. 99, p. 530ADSCrossRefGoogle Scholar
  2. Briel, U.G, Henry, J.R and Bohringer, H. (1992) A&A, Vol. no. 259, p. L31ADSGoogle Scholar
  3. Burns, J.O., Roettiger, K., Ledlow, M. and Klypin, A. (1994) ApJ, Vol. no. 427, p. L87ADSCrossRefGoogle Scholar
  4. Butcher, H.R. and Oemler, A. (1978) ApJ, Vol. no. 219, p. 18ADSCrossRefGoogle Scholar
  5. Butcher, H.R. and Oemler, A. (1984) ApJ, Vol. no. 285, p. 426ADSCrossRefGoogle Scholar
  6. Caldwell, C.N., Rose, J.A., Franx, M., and Leonardi, A. (1995) Preprint Google Scholar
  7. Caldwell, C.N., Rose, J.A., Sharpies, R.M., Ellis, R.S., and Bower, R.G. (1994) AJ, Vol. no. 106, p. 473ADSCrossRefGoogle Scholar
  8. Couch, W.J. and Sharpies, R.M. (1987) MNRAS, Vol. no. 229, p. 42ADSGoogle Scholar
  9. Davies, R.L. (1995) in, New light on Galaxy Evolution, IAU 171, p. XXX.Google Scholar
  10. Dressler, A. and Gunn, J.E. (1982) ApJ, Vol. no. 263, p. 533ADSCrossRefGoogle Scholar
  11. Dressler, A. and Gunn, J.E. (1992) ApJSupp, Vol. no. 78, p. 1ADSCrossRefGoogle Scholar
  12. Evrard, A.E. (1991) MNRAS, Vol. no. 248, p. 8PADSGoogle Scholar
  13. Leonardi, A. and Rose, J.A. (1995) Preprint Google Scholar
  14. Moore, B. (1995) in, New light on Galaxy Evolution, IAU 171, p. XXX.Google Scholar
  15. O’Connell, R. (1980) ApJ, Vol. no. 236, p. 430ADSCrossRefGoogle Scholar
  16. Rose, J.A. (1985) AJ, Vol. no. 90, p. 1927ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • R. M. Sharples
    • 1
  1. 1.Department of PhysicsUniversity of DurhamDurhamUK

Personalised recommendations