Detecting CO at High Redshift

  • Linda J. Tacconi
Conference paper
Part of the International Astronomical Union / Union Astronomique Internationale book series (IAUS, volume 171)


Searches for molecular line emission from high redshift galaxies have become one of the recent highlights in millimeter astronomy, largely because detection of this emission enables one to study the potential for star formation in galaxies at epochs close to galaxy formation. Such information is crucial to models of galaxy evolution. Thus far, most of the searches have been to try to detect any of the rotational lines of CO, although many authors have also inferred the presence of molecular gas through detections of cold dust in the submillimeter region of the spectrum. In addition to providing information about the physical properties of the molecular gas in distant galaxies (when more than one transition or isotope is detected), the CO lines can be used to place stringent constrints on the dynamical masses of these systems. Moreover, since millimeter data has spectral resolutions of typically a few tens of km/s, one can pin down the redshift of the host galaxy with extremely high precision. One of the driving forces in most of the searches for CO emission at high redshift is the fact that molecular gas is known to be an important constituent in the low redshift counterparts to the types of objects that one expects to find at high redshifts, the Ultraluminous Infrared Galaxies (ULIRGs), (e.g. Mirabel and Sanders 1985; Sanders et al. 1986), powerful radio galaxies (e.g. Mazzarella et al. 1993), and nearby quasars (e.g. Barvainis et al. 1989), for example.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barvainis, R., Alloin, D., and Antonucci, R. 1989, Ap.J., 337, L69.ADSCrossRefGoogle Scholar
  2. Barvainis, R., Antonucci, R., and Coleman, P. 1992, Ap.J., 399, L19.ADSCrossRefGoogle Scholar
  3. Barvainis, R., Tacconi, L., Antonucci, R., Alloin, D., and Coleman, P. 1994, Nature, 371, 586.ADSCrossRefGoogle Scholar
  4. Barvainis, R. et al. 1995, in preparation.Google Scholar
  5. Broadhurst, T. and Lehár, J. 1995, Ap.J., 450, L41.ADSCrossRefGoogle Scholar
  6. Brown, R.L., and VandenBout, P.A. 1991, A.J., 102, 1956.ADSCrossRefGoogle Scholar
  7. Brown, R.L., and VandenBout, P.A. 1992, Ap.J., 397, L19.ADSCrossRefGoogle Scholar
  8. Downes, D., Solomon, P.M., and Radford, S.J.E. 1995, Ap.J., submitted.Google Scholar
  9. Graham, J.R. and Liu, M.C. 1995,.J., 449, L29.ADSGoogle Scholar
  10. Kawabe, R., Sakamoto, K., Ishizuki, S., and Ishiguro, M. 1992, Ap.J., 397, L23.ADSCrossRefGoogle Scholar
  11. Magain, P., Surdej, J., Swings, J.-P., Borgeest, U., Kayser, R., Kuhr, H., Refsdal, S., and Remy, M. 1988, Nature, 334, 325.ADSCrossRefGoogle Scholar
  12. Mazzarella, J.M., Graham, J.R., Sanders, D.B., and Djorgovski, S. 1993, Ap.J., 409, 170.ADSCrossRefGoogle Scholar
  13. Radford, S.J.E., Brown, R.L., and Vanden Bout, P.A. 1993, A&A, 271, L21.ADSGoogle Scholar
  14. Rowan-Robinson, M., et al. 1991, Nature, 351, 719.ADSCrossRefGoogle Scholar
  15. Sakamoto, K., Ishizuki, S., Kawabe, R., and Ishiguro, M. 1992, Ap.J., 397, L27.ADSCrossRefGoogle Scholar
  16. Sanders, D.B., and Mirabel, I.F. 1985, Ap.J., 298, L31.ADSCrossRefGoogle Scholar
  17. Sanders, D.B., Scoville, N.Z., Young, J.S., Soifer, B.T., Schloerb, F.P., Rice, W.L., and Danielson, G.E. 1986, Ap.J., 305, L45.ADSCrossRefGoogle Scholar
  18. Solomon, P.M., Downes, D., and Radford, S.J.E. 1992, Ap.J., 398, L29.ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1996

Authors and Affiliations

  • Linda J. Tacconi
    • 1
  1. 1.Max-Planck-Institut für extraterrestrische PhysikGarchingGermany

Personalised recommendations