Qualitative and Quantitative FT-Raman Analysis of Plants

  • Hartwig SchulzEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 14)


Raman spectroscopy has been found to be a reliable and non-destructive method for rapid discrimination of different plant species or chemotypes if characteristic key bands can be observed in the spectrum. Today, even portable Raman spectrometers are available which only need sample amounts of a few microliters or milligrams. In most cases, measurements can be performed directly on plant tissues as well as on fractions isolated from the plant material by hydro-distillation or solvent extraction. Generally, Raman spectroscopy allows obtaining spectra which may present several characteristic key bands of individual plant components. Very often these bands provide very useful information about the chemical composition, including both primary and secondary metabolites occurring in the investigated samples. Based on such markers, spectroscopic analyses in principle allow to discriminate different species, and even to classify chemotypes among the same species. The ability to rapidly monitor various plant components makes it possible to efficiently select high-quality single plants from wild populations as well as progenies of crossing experiments. Furthermore, Raman spectroscopy can also be used by the processing industry in order to perform fast quality checks of incoming raw materials as well as continuous controlling of various production processes. Beside MS and NMR measurements, Raman spectroscopy represents a very important analytical tool in the field of plant metabolic fingerprinting providing an unbiased, global screening approach to classify samples that change in response to the genetic background, various plant diseases or influences by the environment (e.g. various stress effects).


Plaut breeding Plaut cultivation Metabolou analysis Quality control Raman mapping Raman imaging 


  1. 1.
    Parker AW, Bisby RH (1993) J Chem Soc Faraday Trans 89:2873Google Scholar
  2. 2.
    Moskovits M (2006) Surface-enhanced Raman spectroscopy: a brief perspective. In: Kneipp K, Moscovits M, Kneipp H (eds) Surface-enhanced Raman scattering. Springer, Berlin, pp 1–17Google Scholar
  3. 3.
    Rösch P, Popp J, Kiefer W (1999) J Mol Struct 480/481:121Google Scholar
  4. 4.
    Zeiri L (2007) J Raman Spectrosc 38:950Google Scholar
  5. 5.
    Gordea-Torresdey JL, Parson JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Jose-Yacaman M (2002) Nano Lett 2:397Google Scholar
  6. 6.
    Gordea-Torresdey JL, Gomez E, Peralta-Videa J, Parson JG, Troiani HE, Jose-Yacaman M (2003) Langmuir 19:1357Google Scholar
  7. 7.
    Goodacre R, Vaidyanathan S, DunnWB, Harrigan GG, Kell DB (2004) Trends Biotechnol 22:245Google Scholar
  8. 8.
    Kell DB (2004) Curr Opin Microbiol 7:296Google Scholar
  9. 9.
    Baeten V, Hourant P, Morals MT, Aparicio R (1998) J Agric Food Chem 46:2638Google Scholar
  10. 10.
    Li-Chan ECY (1994) Trends Food Sci Technol 5:3Google Scholar
  11. 11.
    Muik B, Lendl B, Molina-Diaz A, Ayora-Canada MJ (2003) Anal Chim Acta 487:211Google Scholar
  12. 12.
    Muik B, Lendl B, Molina-Diaz A, Ayora-Canada MJ (2003) Appl Spectrosc 57:233Google Scholar
  13. 13.
    Heise HM, Damm U, Lampen P, Davies AN, McIntyre PS (2005) Appl Spectrosc 59:1286Google Scholar
  14. 14.
    Reitzenstein S, Rösch P, Strehle MA, Berg D, Baranska M, Schulz H, Rudloff E, Popp J (2007) J Raman Spectrosc 38:301Google Scholar
  15. 15.
    Yang H, Irudayaraj J, Paradkar MM (2005) Food Chem 93:25Google Scholar
  16. 16.
    Barthus RC, Poppi RJ (2001) Vib Spectrosc 26:99Google Scholar
  17. 17.
    Marigheto NA, Kemsley EK, Defernez M, Wilson RH (1998) J Amer Oil Chemists’ Soc 75:987Google Scholar
  18. 18.
    Weng RH, Weng YM, Chen WL (2006) J Chinese Chem Soc 53:597Google Scholar
  19. 19.
    Yang H, Irudayaraj J (2001) J Am Oil Chemists’ Soc 78:889Google Scholar
  20. 20.
    Omar J, Sarmiento A, Olivares M, Alonso I, Etxebarria N (2012) J Raman Spectrosc 43:1151Google Scholar
  21. 21.
    El-Abassy RM, Donfack P, Materny A (2009) J Raman Spectrosc 40:1284Google Scholar
  22. 22.
    Bailey GF, Horvat RJ (1972) J Amer Oil Chemists’ Soc 49:494Google Scholar
  23. 23.
    Johnson GL, Machado RM, Freidl KG, Achenbach ML, Clark PJ, Reidy SK (2002) Organ Process Res Dev 6:637Google Scholar
  24. 24.
    Beattie JR, Maguire C, Gilchrist S, Barrett LJ, Cross CE, Possmayer F, Ennis M, Elborn JS, Curry W, McGarvey JJ, Schock BC (2007) J Fed Am Soc Exp Biol 21:766Google Scholar
  25. 25.
    Prinsloo LC, du Plooy W, van der Merwe C (2004) J Raman Spectrosc 35:561Google Scholar
  26. 26.
    Susi H, Byler DM (1988) Appl Spectrosc 42:819Google Scholar
  27. 27.
    Séné CFB, McCann MC, Wilson RH, Grinter R (1994) Plant Physiol 106:1623Google Scholar
  28. 28.
    Peticolas WL (1995) Methods Enzymol 246:389Google Scholar
  29. 29.
    Barron C, Robert P, Guillon F, Saulnier L, Rouau X (2006) Carbohydr Res 341:1186Google Scholar
  30. 30.
    Goral J (1990) Curr Top Biophys 16:33Google Scholar
  31. 31.
    Baranska M, Baranski R, Schulz H, Nothnagel T (2006) Planta 224:1028Google Scholar
  32. 32.
    Baranska M, Schulz H, Krüger H, Quilitzsch R (2005) Anal Bioanal Chem 381:1241Google Scholar
  33. 33.
    Daferera DJ, Tarantulis PA, Polissiou MG (2002) J Agric Food Chem 50:5503Google Scholar
  34. 34.
    Schulz H, Baranska M (2005) Perfum Flavorist 30:28Google Scholar
  35. 35.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (eds) (1991) The handbook of infrared and Raman characteristic freqencies of organic molecules. Academic Press Inc, San DiagoGoogle Scholar
  36. 36.
    Lin SY, Dence CW (eds) (1992) Methods in lignin chemistry. Springer-Verlag, BerlinGoogle Scholar
  37. 37.
    Agarwal UP (2006) Planta 224:1141Google Scholar
  38. 38.
    Vester J, Felby C, Nielsen OF, Barsberg S (2004) Appl Spectrosc 58:404Google Scholar
  39. 39.
    Saariaho A-M, Argyropoulos DS, Jaaskelainen A-S, Vuorinen T (2005) Vib Spectrosc 37:111Google Scholar
  40. 40.
    Agarwal UP, Ralph SA (1997) Appl Spectrosc 51:1648Google Scholar
  41. 41.
    Agarwal UP, Reiner RS (2009) J Raman Spectrosc 40:1527Google Scholar
  42. 42.
    Lupoi JS, Smith EA (2012) Appl Spectrosc 66:903Google Scholar
  43. 43.
    Ferreira ESB, Hulme AN, McNab H, Quye A (2004) Chem Soc Rev 33:329Google Scholar
  44. 44.
    Cornard JP, Vrielynck L, Merlin JC, Wallet JC (1995) Spectrochim Acta Part A 51:913Google Scholar
  45. 45.
    Cornard JP, Merlin JC, Boudet C, Vrielynck L (1997) Biospectroscopy 3:183Google Scholar
  46. 46.
    Vrielynck L, Cornard JP, Merlin JC, Lautie MF (1994) Spectrochim Acta Part A 50:2177Google Scholar
  47. 47.
    Erdogdu Y, Unsalan O, Sajan D, Gulluoglu MT (2010) Spectrochim Acta Part A 76:130Google Scholar
  48. 48.
    Bell IM, Clark JHC, Gibbs PJ (1997) Spectrochim Acta Part A 53:2159Google Scholar
  49. 49.
    Burgio L, Clark RJH (2001) Spectrochimica Acta Part A 57:1491Google Scholar
  50. 50.
    Buchweitz M, Gudi G, Carle R, Kammerer DR, Schulz H (2012) J Raman Spectrosc 43:2001Google Scholar
  51. 51.
    Brouillard R (1983) Phytochemistry 22:1311Google Scholar
  52. 52.
    Merlin JC, Statoua A, Brouillard R (1985) Phytochemistry 24:1575Google Scholar
  53. 53.
    Gamsjäger S, Baranska M, Schulz H, Heiselmayer P, Musso M (2011) J Raman Spectrosc 42:1240Google Scholar
  54. 54.
    Baranska M, Schulz H, Joubert E, Manley M (2006) Anal Chem 78:7716Google Scholar
  55. 55.
    Joubert E, Winterton P, Britz TJ, Gelderblom WCA (2005) J Agric Food Chem 53:10260Google Scholar
  56. 56.
    Teslova T, Corredor C, Livingstone R, Spataru T, Birke RL, Lombardi JR, Canamares MV, Leona M (2007) J Raman Spectrosc 38:802Google Scholar
  57. 57.
    Cañamares MV, Leona M, Bouchard M, Grzywacz CM, Wouters J, Trentelman K (2010) J Raman Spectrosc 41:391Google Scholar
  58. 58.
    Chen K, Leona M, Vo-Dinh K, Yan F, Wabuyele MB, Vo-Dinh T (2006) J Raman Spectrosc 37:520Google Scholar
  59. 59.
    Bruni S, Guglielmi V, Pozzi F, Mercuri AM (2011) J Raman Spectrosc 42:473Google Scholar
  60. 60.
    Calheiros R, Machado NFL, Fiuza SM, Gaspar A, Garrido J, Milhazes N, Borges F, Marques MPM (2008) J Raman Spectrosc 39:95Google Scholar
  61. 61.
    Fiedler A, Baranska M, Schulz H (2011) J Raman Spectrosc 42:551Google Scholar
  62. 62.
    Baran A, Fiedler A, Schulz H, Baranska M (2010) Anal Methods 2:1372Google Scholar
  63. 63.
    Baranska M, Schulz H (2009) Determination of alkaloids trough infrared and Raman spectroscopy. In: Cordell GA (ed) The alkaloids, Vol. 67. Elsevier, Netherlands, pp 217Google Scholar
  64. 64.
    Gunasekaran S, Sankari G, Ponnusamy S (2005) Spectrochim Acta A 61:117Google Scholar
  65. 65.
    Edwards HGM, Villar SE, de Oliveira LFC, Le Hyaric M (2005) Anal Chim Acta 538:175Google Scholar
  66. 66.
    Schulz H, Baranska M, Quilitzsch R, Schütze W (2004) Analyst 129:917Google Scholar
  67. 67.
    Frosch T, Schmitt M, Noll T, Bringmann G, Schenzel K, Popp J (2007) Anal Chem 79:986Google Scholar
  68. 68.
    Bringmann G, Rübenacker M, Vogt P, Busse H, Assi LA (1992) Phytochemistry 31:4019Google Scholar
  69. 69.
    Frosch T, Schmitt M, Schenzel K, Faber JH, Bringmann G, Kiefer W, Popp J (2006) Biopolymers 82:295Google Scholar
  70. 70.
    Frosch T, Schmitt M, Popp J (2007) J Phys Chem B 111:4171Google Scholar
  71. 71.
    Schulz H, Baranska M (2007) Vib Spectrosc 43:13Google Scholar
  72. 72.
    Schulz H, Schrader B, Quilitzsch R, Steuer B (2002) Appl Spectrosc 56:117Google Scholar
  73. 73.
    Schrader B (1995) Infrared and Raman spectroscopy methods and applications. VCH, WeinheimGoogle Scholar
  74. 74.
    Daferera DJ, Pappas C, Tarantulis PA, Polissiou MG (2002) Food Chem 77:511Google Scholar
  75. 75.
    Rösch P, Kiefer W, Popp J (2002) Biopolymers 76:358Google Scholar
  76. 76.
    Baranska M, Schulz H, Reitzenstein S, Uhlemann U, Strehle MA, Krüger H, Quilitzsch R, Foley W, Popp J (2005) Biopolymers 78:237Google Scholar
  77. 77.
    Baranska M, Schulz H, Rösch P, Strehle MA, Popp J (2004) Analyst 129:926Google Scholar
  78. 78.
    Strehle MA, Rösch P, Baranska M, Schulz H, Popp J (2005) Biopolymers 77:44Google Scholar
  79. 79.
    Gessner R, Rösch P, Kiefer W, Popp J (2002) Biopolymers 76:327Google Scholar
  80. 80.
    Schulz H, Baranska M, Quilitzsch R, Schütze W, Lösing G (2005) J Agric Food Chem 53:3358Google Scholar
  81. 81.
    Schulz H, Özkan G, Baranska M, Krüger H, Özcan M (2005) Vib Spectrosc 39:249Google Scholar
  82. 82.
    Schulz H, Schrader B, Quilitzsch R, Pfeffer S, Krüger H (2003) J Agric Food Chem 51:2475Google Scholar
  83. 83.
    Chruszcz-Lipska K, Blanch EW (2011) J Raman Spectrosc 43:286Google Scholar
  84. 84.
    Mlodzinska E (2009) Acta Biol Cracoviensia Ser Bot 51:7Google Scholar
  85. 85.
    Bode S, Quentmeier CC, Liao P-N, Hafi N, BarrosT, Wilk L, Bittner F, Walla PJ (2009) PNAS 106:12311Google Scholar
  86. 86.
    Salares VR, Mendelsohn R, Carey PR, Bernstein HJ (1976) J Phys Chem 80:1137Google Scholar
  87. 87.
    Gierlinger N, Schwanninger M (2007) Spectrosc Int J 21:69Google Scholar
  88. 88.
    Schulz H, Baranska M, Baranski R (2005) Biopolymers 77:212Google Scholar
  89. 89.
    Baranski R, Baranska M, Schulz H (2005) Planta 222:448Google Scholar
  90. 90.
    Pudney PDA, Gambelli L, Gidley M (2011) Appl Spectr 65:127Google Scholar
  91. 91.
    Baranski R, Baranska M, Schulz H, Simon PW, Nothnagel T (2006) Biopolymers 81:497Google Scholar
  92. 92.
    Baranska M, Schulz H (2006) Planta 224:1028Google Scholar
  93. 93.
    Baranska M, Schulz H, Christensen LPJ (2006) J Agric Food Chem 54:3629Google Scholar
  94. 94.
    Baranska M, Schütze W, Schulz H (2006) Anal Chem 78:8456Google Scholar
  95. 95.
    Baranska M, Baranski R, Grzebelus E, Roman M (2011) Vib Spectr 56:166Google Scholar
  96. 96.
    Brackmann C, Bengtsson A, Alminger ML, Svanberg U, Enejder A (2011) J Raman Spectr 42:586Google Scholar
  97. 97.
    de Oliveira VE, Castro HV, Edwards HGM, de Oliveira LFC (2010) J Raman Spectrosc 41:642Google Scholar
  98. 98.
    López-Sánchez M, Ayora-Cañada MJ, Molina-Díaz A (2010) J Agric Food Chem 58:82Google Scholar
  99. 99.
    Ivleva NP, Niessner R, Panne U (2005) Anal Bioanal Chem 381:261Google Scholar
  100. 100.
    Schulte F, Lingott J, Panne U, Kneipp J (2008) Anal Chem 80:9551Google Scholar
  101. 101.
    Schulte F, Mäder J, Kroh LW, Panne U, Kneipp J (2009) Anal Chem 81:8426Google Scholar
  102. 102.
    Sanchez-Cortes S, Domingo C, Garcia-Ramos JV, Aznarez JA (2001) Langmuir 17:1157Google Scholar
  103. 103.
    Jones H, Safe S, Thaller V (1966) J Chem Soc C 52:1220Google Scholar
  104. 104.
    Bohlmann F, Burkhardt T, Zdero C (1973) Naturally occurring acetylenes. Academic Press, LondonGoogle Scholar
  105. 105.
    Xu X, Yuan Y, Wang X, Li Y (2011) FEMS Microbiol Lett 314:42Google Scholar
  106. 106.
    Minto RE, Blacklock BJ (2008) Prog Lipid Res 47:233Google Scholar
  107. 107.
    Even J, Bertault M, Girard A, Delugeard Y, Fave J-L (1994) Chem Phys 188:235Google Scholar
  108. 108.
    Schrader B, Schulz H, Baranska M, Andreev GN, Lehner C, Sawatzki J (2005) Spectrochim Acta A 61:1395Google Scholar
  109. 109.
    Roman M, Dobrowolski J Cz, Baranska M (2011) J Chem Inf Model 51:283Google Scholar
  110. 110.
    Baranska M, Schulz H, Baranski R, Nothnagel T, Christensen LP (2005) J Agric Food Chem 53:6565Google Scholar
  111. 111.
    Roman M, Dobrowolski J Cz, Baranska M, Baranski R (2011) J Nat Prod 74:1757Google Scholar
  112. 112.
    Metzger BT, Barnes DMJ (2009) Agric Food Chem 57:11134Google Scholar
  113. 113.
    Frese L (1983) Gartenbauwissenschaft 48:259Google Scholar
  114. 114.
    Roman M, Baranski R, Baranska M (2011) J Agric Food Chem 59:7647Google Scholar
  115. 115.
    Alvarez L, Marquina S, Villarreal ML, Alonso D, Aranda E, Delgado G (1996) Planta Med 62:355Google Scholar
  116. 116.
    Redl K, Breu W, Davis B, Bauer R (1994) Planta Med 60:58Google Scholar
  117. 117.
    Chang M-H, Wang G-J, Kuo Y-H, Lee C-K (2000) Chin Chem Soc 47:1131Google Scholar
  118. 118.
    Thygesen LG, Jørgensen K, Møller BL, Engelsen SB (2004) Appl Spectrosc 58:212Google Scholar
  119. 119.
    Micklander E, Brimer L, Engelsen SB (2002) Appl Spectrosc, 56:1139Google Scholar
  120. 120.
    Nersissian AM, Mehrabian ZA, Nalbandyan RM, Hart PJ, Fraczkiewicz G, Czernuszewicz RS, Bender CJ, Peisach J, Herrmann RG, Valentine J (1996) Protein Sci 5:2184Google Scholar
  121. 121.
    Nestor L, Larrabee JA, Woolery G, Reinhammer B, Spiro TG (1984) Biochemistry 23:1084Google Scholar
  122. 122.
    Fălămaş A, Pînzaru SC, Dehelean CA, Peev CI, Soica C (2011) J Raman Spectrosc 42:97Google Scholar
  123. 123.
    Talian I, Oriňák A, Efremov EV, Ariese F, Kaniansky D, Oriňáková R, Hübner J (2010) J Raman Spectrosc 41:964Google Scholar
  124. 124.
    Baranska M, Schulz H, Siuda R, Strehle MA, Rösch P, Popp J, Joubert E, Manley M (2005) Biopolymers 77:1Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Julius Kühn-Institute, Institute for Ecological Chemistry, Plant Analysis and Stored Product ProtectionFederal Research Centre for Cultivated PlantsBerlinGermany

Personalised recommendations