Fourier Transform Infrared (Ft-Ir) Spectroscopic Imaging for Solid Tumor Histopathology

  • Sreeradha Biswas
  • Michael J. Walsh
  • Rohit BhargavaEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 14)


Fourier transform infrared (FT-IR) spectroscopic imaging has shown great promise in becoming a powerful tool in cytology and histopathology. Applications for cancer diagnoses in solid tumors are especially attractive as samples are spatially complex and involve myriad molecular changes whereas there are many shortcomings in current clinical practice that can be addressed. Here we review the current state of the art in applying FT-IR imaging for analyzing solid tumors. We focus on instrumentation that is relatively new, emerging fundamental understanding gained by new theoretical advances, data analysis and selected, illustrative applications in cancer histopathology.


Fourier transform infrared imaging theory instrumentation lasers discrete frequency tissue imaging cancer pathology metrics Bayesian classification statistical pattern recognition prostate breast histopathology 


  1. 1.
    Bhargava R (2012) Infrared spectroscopic imaging: the next generation. Appl Spectrosc 66(10):1091–120CrossRefGoogle Scholar
  2. 2.
    Bhargava R (Oct (2007) Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology. Anal Bioanal Chem 389(4):1155–1169CrossRefGoogle Scholar
  3. 3.
    Srinivasan G, Bhargava R (Jul 2007) Fourier transform-infrared spectroscopic imaging: the emerging evolution from a microscopy tool to a cancer imaging modality. Spectroscopy 22(7):30Google Scholar
  4. 4.
    Levin IW, Bhargava R (5 May 2005) Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition. Annu Rev Phys Chem 56(1):429–474Google Scholar
  5. 5.
    Griffiths PR, de Haseth JA (2007) Fourier transform infrared spectrometry. Wiley, HobokenCrossRefGoogle Scholar
  6. 6.
    Jackson M (2004) Biomolecules to biodiagnostics: spectroscopy does it all. Faraday Discuss 126:1–18CrossRefGoogle Scholar
  7. 7.
    Jackson M, Sowa MG, Mantsch HH (Oct 1997) Infrared spectroscopy: a new frontier in medicine. Biophys Chem 68(1–3):109–125Google Scholar
  8. 8.
    Diem M, Romeo M, Boydston-White S, Miljković M, Matthäus C (2004) A decade of vibrational micro-spectroscopy of human cells and tissue (1994-2004). Analyst 129(10):880–885CrossRefGoogle Scholar
  9. 9.
    Martin FL, Kelly JG, Llabjani V, Martin-Hirsch PL, Patel II, Trevisan J, Fullwood NJ, Walsh MJ (2010) Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Prot 5:1748–1760CrossRefGoogle Scholar
  10. 10.
    Diem M, Griffiths PR, Chalmers JM (eds) (2008) Vibrational spectroscopy for medical diagnosis. Wiley, ChichesterGoogle Scholar
  11. 11.
    Fernandez DC, Bhargava R, Hewitt SM, Levin IW (2005) Infrared spectroscopic imaging for histopathologic recognition. Nat Biotechnol 23(4):469–474CrossRefGoogle Scholar
  12. 12.
    Colarusso P, Kidder LH, Levin IW, Fraser JC, Arens JF, Lewis EN (1998) Infrared spectroscopic imaging: from planetary to cellular systems. Appl Spectrosc 52:106a–120aGoogle Scholar
  13. 13.
    Walsh MJ, Reddy RK, Bhargava R (2012) Label-free biomedical imaging with mid-Infrared microspectroscopy. IEEE J Sel Top Quant 18:1502–1513CrossRefGoogle Scholar
  14. 14.
    Dumas P, Jamin N, Teillaud JL, Miller LM, Beccard B (2004) Imaging capabilities of synchrotron infrared microspectroscopy. Faraday Discuss 126:289–302. discussion 303–311Google Scholar
  15. 15.
    Miller LM, Dumas P (Jul 2006) Chemical imaging of biological tissue with synchrotron infrared light. Bio chim Bio phys Acta 1758(7):846–857Google Scholar
  16. 16.
    Dumas P, Sockalingum GD, Sule-Suso J (Jan 2007) Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications? Trends Biotechnol 25(1):40–44Google Scholar
  17. 17.
    Hirschmugl CJ, Gough KM (May 2012) Fourier transform infrared spectrochemical imaging: review of design and applications with a focal plane array and multiple beam synchrotron radiation source. Appl Spectrosc 66(5):475–491Google Scholar
  18. 18.
    Bhargava R, Levin IW (eds) (2005) Spectrochemical analysis using infrared multichannel detectors. Blackwell Publishing, Oxford, pp 56–84Google Scholar
  19. 19.
    Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marcott C, Levin IW (1995) Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Anal Chem 67:3377–3381CrossRefGoogle Scholar
  20. 20.
    Bhargava R, Wall BG, Koenig JL (2000) Comparison of the FT-IR mapping and imaging techniques applied to polymeric systems. Appl Spectrosc 54:470–474CrossRefGoogle Scholar
  21. 21.
    Koenig JL, Wang SQ, Bhargava R (2001) FT-IR Images. Anal Chem 73:360A–369ACrossRefGoogle Scholar
  22. 22.
    Bhargava R, Levin IW (2003) Time-resolved Fourier transform infrared spectroscopic imaging. Appl Spectrosc 57:357–366CrossRefGoogle Scholar
  23. 23.
    Bhargava R, Levin IW (2003) Noninvasive imaging of molecular dynamics in heterogeneous materials. Macromolecules 36:92–96CrossRefGoogle Scholar
  24. 24.
    Bhargava R, Levin IW (2001) Fourier transform infrared imaging: theory and practice. Anal Chem 73:5157–5167CrossRefGoogle Scholar
  25. 25.
    Nasse MJ, Walsh MJ, Mattson EC, Reininger R, Kajdacsy-Balla A, Macias V et al (May 2011) High-resolution fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat Methods 8(5):413–416Google Scholar
  26. 26.
    Walsh MJ, Mayerich D ,Kajdacsy-Balla A, Bhargava R (2012) High resolution mid-infrared Imaging for disease diagnosis. Proc. of SPIE Vol. 8219 82190R–1Google Scholar
  27. 27.
    Reddy RK, Walsh MJ, Schulmerich MV, Carney PS, Bhargava R (2013) High-definition infrared spectroscopic imaging. Appl Spectrosc 67:93–105CrossRefGoogle Scholar
  28. 28.
    Nasse MJ, Mattson E, Hirschmugl C (2010) First results from IRENI—rapid diffraction-limited high resolution imaging across the mid-infrared bandwidth. AIP Conference Proceedings 1214, pp 108–110Google Scholar
  29. 29.
    Stavitski E, Smith RJ, Bourassa MW, Acerbo AS, Carr GL, Miller LM (2013) Dynamic full-field infrared imaging with multiple synchrotron beams. Anal Chem 85(7):3599–3605CrossRefGoogle Scholar
  30. 30.
    Marcelli A, Cricenti A, Kwiatek WM, Petibois C (2012) Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnology Advances 30(6):1390–1404CrossRefGoogle Scholar
  31. 31.
    Petibois C, Cestelli-Guidi M, Piccinini M, Moenner M, Marcelli A (2010) Synchrotron radiation FTIR imaging in minutes: a first step towards real-time cell imaging. Anal Bioanal Chem 397(6):2123–2129CrossRefGoogle Scholar
  32. 32.
    Marcelli A, Cinque G (2011) Infrared synchrotron radiation beamlines: high brilliance tools for IR spectromicroscopy. RSC Analytical Spectroscopy Series, pp 67–104Google Scholar
  33. 33.
    Walsh MJ, Holton SE, Kajdacsy-Balla A, Bhargava R (2012) Attenuated total reflectance fourier transform infrared spectroscopic imaging for comprehensive breast tissue histopathology. Vib Spectrosc 60:23–28CrossRefGoogle Scholar
  34. 34.
    Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta—Biomembranes 1758(7):858–867Google Scholar
  35. 35.
    Kazarian SG, Chan KLA (2013) ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 138(7):1940–1951CrossRefGoogle Scholar
  36. 36.
    Bassan P, Byrne HJ, Bonnier F, Lee J, Dumas P, Gardner P (2009) Resonant Mie scattering in infrared spectroscopy of biological materials—understanding the ‘dispersion artefact’. Analyst 134(8):1586–1593CrossRefGoogle Scholar
  37. 37.
    Lee J, Gazi E, Dwyer J, Brown MD, Clarke NW, Nicholson JM, Gardner P (2007) Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics. Analyst 132(8):750–755CrossRefGoogle Scholar
  38. 38.
    Bassan P, Byrne HJ, Lee J, Bonnier F, Clarke C, Dumas P, Gazi E et al (2009) Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells. Analyst 134(6):1171–1175CrossRefGoogle Scholar
  39. 39.
    Romeo M, Mohlenhoff B, Diem M (2006) Infrared micro-spectroscopy of human cells: causes for the spectral variance of oral mucosa (buccal) cells. Vib Spectrosc 42(1):9–14CrossRefGoogle Scholar
  40. 40.
    Filik J, Frogley MD, Pijanka JK, Wehbe K, Cinque G (2012) Electric field standing wave artefacts in FTIR micro-spectroscopy of biological materials. Analyst 137(4):853–861CrossRefGoogle Scholar
  41. 41.
    Wehbe K, Filik J, Frogley MD, Cinque G (2013) The effect of optical substrates on micro-FTIR analysis of single mammalian cells. Anal Bioanal Chem 405(4):1311–1324CrossRefGoogle Scholar
  42. 42.
    Gulley-Stahl HJ, Bledsoe SB, Evan AP, Sommer AJ (2010) The advantages of an attenuated total internal reflection infrared microspectroscopic imaging approach for kidney biopsy analysis. Appl Spectrosc 64(1):15–22CrossRefGoogle Scholar
  43. 43.
    Davis BJ, Carney PS, Bhargava R (2010) Theory of mid-infrared absorption microspectroscopy. II. Heterogeneous samples. Anal Chem 82:3487–3499CrossRefGoogle Scholar
  44. 44.
    Davis BJ, Carney PS, Bhargava R (2010) Theory of mid-infrared absorption microspectroscopy. I. Homogeneous samples. Anal Chem 82:3474–3486CrossRefGoogle Scholar
  45. 45.
    Davis BJ, Carney PS, Bhargava R (2011) Infrared microspectroscopy of intact fibers. Anal Chem 83:525–532CrossRefGoogle Scholar
  46. 46.
    van Dijk T, Mayerich D, Carney PS, Bhargava R (2013) Recovery of absorption spectra from Fourier transform infrared microspectroscopic measurements of intact spheres. Appl Spectrosc 67:546–552CrossRefGoogle Scholar
  47. 47.
    Miller LM, Dumas P (Jul 2006) Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta (BBA)—Biomembranes 1758(7):846-857, ISSN 0005-2736,
  48. 48.
    Bhargava R, Fernandez DC, Hewitt SM, Levin IW (2006) High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data. Biochim Biophys Acta 1758:830–845Google Scholar
  49. 49.
    Kwak JT, Reddy RK, Sinha S, Bhargava R (2012) An analysis of the sources of variance in Fourier transform infrared spectroscopic imaging of tissues. Anal Chem 84:1063–1069CrossRefGoogle Scholar
  50. 50.
    Pounder NF et al. Proc. of SPIE vol 7182 718206–2Google Scholar
  51. 51.
    Fabian H, Lasch P, Boese M, Haensch W (16 Dec 2003) Infrared microspectroscopic imaging of benign breast tumor tissue sections. J Mol Struct 661:411–417Google Scholar
  52. 52.
    Fabian H, Lasch P, Boese M, Haensch W (2002) Mid-IR microspectroscopic imaging of breast tumor tissue sections. Biopolymers 67(4–5):354–357CrossRefGoogle Scholar
  53. 53.
    Fabian H, Thi NAN, Eiden M, Lasch P, Schmitt J, Naumann D (Jul 2006) Diagnosing benign and malignant lesions in breast tissue sections by using IR-microspectroscopy. Biochimica Et Biophysica Acta-Biomembranes 1758(7):874–882Google Scholar
  54. 54.
    Lyman DJ, Murray-Wijelath J (Jan 2005) Fourier transform infrared attenuated total reflection analysis of human hair: comparison of hair from breast cancer patients with hair from healthy subjects. Appl Spectrosc 59(1):26–32Google Scholar
  55. 55.
    BüttnerMostaço-Guidolin L, Murakami LS, RibeiroBatistuti M, Nomizo A, Bachmann L (2010) Molecular and chemical characterization by Fourier transform infrared spectroscopy of human breast cancer cells with estrogen receptor expressed and not expressed. Spectroscopy 24:501–510CrossRefGoogle Scholar
  56. 56.
    Holton SE, Walsh MJ, Kajdacsy-Balla A, Bhargava R (21 Sept 2011) Label-free characterization of cancer-activated fibroblasts using infrared spectroscopic imaging. Biophys J 101(6):1513–1521CrossRefGoogle Scholar
  57. 57.
    Holton SE, Bergamaschi A, Katzenellenbogen BS, Bhargava R (2012) A spectroscopic signature associated with hormone sensitivity in 3D co-culture models of breast cancer. AACR 103rd annual meeting, Chicago, March 31-April 4 2012Google Scholar
  58. 58.
    Baker R, Rogers KD, Shepherd N, Stone N (28 Sept 2010) New relationships between breast microcalcifications and cancer. Br J Cancer 103(7):1034–1039Google Scholar
  59. 59.
    Kwak JT, Hewitt SM, Sinha S, Bhargava R (9 Feb 2011) Multimodal microscopy for automated histologic analysis of prostate cancer. BMC Cancer 11:62Google Scholar
  60. 60.
    Baker MJ, Gazi E, Brown MD, Shanks JH, Clarke NW, Gardner P (Feb 2009) Investigating FTIR based histopathology for the diagnosis of prostate cancer. J Biophotonics 2(1–2):104–113Google Scholar
  61. 61.
    Mackanos MA, Contag CH (Dec 2009) FTIR microspectroscopy for improved prostate cancer diagnosis. Trends Biotechnol 27(12):661–663Google Scholar
  62. 62.
    Baker MJ, Gazi E, Brown MD, Shanks JH, Gardner P, Clarke NW (25 Nov 2008) FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer. Br J Cancer 99(11):1859–1866Google Scholar
  63. 63.
    Gazi E, Baker M, Dwyer J, Lockyer NP, Gardner P, Shanks JH et al (Oct 2006) A correlation of FTIR spectra derived from prostate cancer biopsies with gleason grade and tumour stage. Eur Urol 50(4):750–761Google Scholar
  64. 64.
    Gasper R, Goormaghtigh E (Dec 2010) Effects of the confluence rate on the FTIR spectrum of PC-3 prostate cancer cells in culture. Analyst 135(12):3048–3051Google Scholar
  65. 65.
    Gasper R, Mijatovic T, Benard A, Derenne A, Kiss R, Goormaghtigh E (Nov 2010) FTIR spectral signature of the effect of cardiotonic steroids with antitumoral properties on a prostate cancer cell line. Biochim Biophys Acta 1802(11):1087–1094Google Scholar
  66. 66.
    Gasper R, Mijatovic T, Kiss R, Goormaghtigh E (1 Jan 2010) FTIR spectroscopy reveals the concentration dependence of cellular modifications induced by anticancer drugs. Spectrosc Int J 24(1):45–49CrossRefGoogle Scholar
  67. 67.
    Derenne A, Gasper R, Goormaghtigh E (21 Mar 2011) The FTIR spectrum of prostate cancer cells allows the classification of anticancer drugs according to their mode of action. Analyst 136(6):1134–1141CrossRefGoogle Scholar
  68. 68.
    Patel II, Trevisan J, Singh PB, Nicholson CM, Krishnan RK, Matanhelia SS et al (Aug 2011) Segregation of human prostate tissues classified high-risk (UK) versus low-risk (india) for adenocarcinoma using fourier-transform infrared or ramanmicrospectroscopy coupled with discriminant analysis. Anal Bioanal Chem 401(3):969–982Google Scholar
  69. 69.
    Gazi E, Dwyer J, Gardner P, Ghanbari-Siahkali A, Wade AP, Miyan J et al (Sep 2003) Applications of fourier transform infrared microspectroscopy in studies of benign prostate and prostate cancer. A pilot study. J Pathol 201(1):99–108Google Scholar
  70. 70.
    Gazi E, Dwyer J, Lockyer NP, Gardner P, Shanks JH, Roulson J et al (Mar 2007) Biomolecular profiling of metastatic prostate cancer cells in bone marrow tissue using FTIR microspectroscopy: a pilot study. Anal Bioanal Chem 387(5):1621–1623Google Scholar
  71. 71.
    Khanmohammadi M, Garmarudi AB, Ghasemi K, Jaliseh HK, Kaviani A (2009) Diagnosis of colon cancer by attenuated total reflectance-fourier transform infrared microspectroscopy and soft independent modeling of class analogy. Med Oncol 26(3):292–297CrossRefGoogle Scholar
  72. 72.
    Khanmohammadi M, BagheriGarmarudi A, Samani S, Ghasemi K, Ashuri A (Jun 2011) Application of linear discriminant analysis and attenuated total reflectance fourier transform infrared microspectroscopy for diagnosis of colon cancer. Pathol Oncol Res 17(2):435–441Google Scholar
  73. 73.
    Lasch P, Haensch W, Lewis EN, Kidder LH, Naumann D (Jan 2002) Characterization of colorectal adenocarcinoma sections by spatially resolved FT-IR microspectroscopy. Appl Spectrosc 56(1):1–9Google Scholar
  74. 74.
    Li X, Li QB, Zhang GJ, Xu YZ, Sun XJ, Shi JS et al (2012) Identification of colitis and cancer in colon biopsies by fourier transform infrared spectroscopy and chemometrics. Sci World J 2012:936149Google Scholar
  75. 75.
    Walsh MJ et al Proc of SPIE Vol 8219 82190R–2Google Scholar
  76. 76.
    Mackanos MA, Hargrove J, Wolters R, Du CB, Friedland S, Soetikno RM et al (Jul-Aug 2009) Use of an endoscope-compatible probe to detect colonic dysplasia with fourier transform infrared spectroscopy. J Biomed Opt 14(4):044006Google Scholar
  77. 77.
    Yousef I, Breard J, SidAhmed-Adrar N, Maamer-Azzabi A, Marchal C, Dumas P et al (21 Dec 2011) Infrared spectral signatures of CDCP1-induced effects in colon carcinoma cells. Analyst 136(24):5162–5168Google Scholar
  78. 78.
    Kondepati VR, Heise HM, Oszinda T, Mueller R, Keese M, Backhaus J (11 Mar 2008) Detection of structural disorders in colorectal cancer DNA with fourier-transform infrared spectroscopy. Vib Spectrosc 46(2):150–157CrossRefGoogle Scholar
  79. 79.
    Tosi G, Conti C, Giorgini E, Ferraris P, Garavaglia MG, Sabbatini S et al FTIR microspectroscopy of melanocytic skin lesions: a preliminary study. Analyst (12):3213Google Scholar
  80. 80.
    Ly E, Piot O, Durlach A, Bernard P, Manfait M (Jun 2009) Differential diagnosis of cutaneous carcinomas by infrared spectral micro-imaging combined with pattern recognition. Analyst 134(6):1208–1214Google Scholar
  81. 81.
    Hammody Z, Argov S, Sahu RK, Cagnano E, Moreh R, Mordechai S (Mar 2008) Distinction of malignant melanoma and epidermis using IR micro-spectroscopy and statistical methods. Analyst 133(3):372–378Google Scholar
  82. 82.
    Mordechai S, Sahu RK, Hammody Z, Mark S, Kantarovich K, Guterman H et al (Jul 2004) Possible common biomarkers from FTIR microspectroscopy of cervical cancer and melanoma. J Microsc Oxf 215:86–91Google Scholar
  83. 83.
    Mostaço-Guidolin LB, Murakami LS, Nomizo A, Bachmann L (23 Jul 2009, Nov 2012) Fourier transform infrared spectroscopy of skin cancer cells and tissues. Appl Spectrosc Rev 44(5):438–455Google Scholar
  84. 84.
    Hammody Z, Sahu RK, Mordechai S, Cagnano E, Argov S (18 Mar 2005) Characterization of malignant melanoma using vibrational spectroscopy. Sci World J 5:173–182Google Scholar
  85. 85.
    Kong R, Reddy RK, Bhargava R (Jul 2010) Characterization of tumor progression in engineered tissue using infrared spectroscopic imaging. Analyst 135(7):1569–1578Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sreeradha Biswas
    • 1
  • Michael J. Walsh
    • 2
  • Rohit Bhargava
    • 3
    Email author
  1. 1.Biophysics programUniversity of Illinois Urbana-ChampaignUrbanaUSA
  2. 2.Beckman Institute for Advanced Science and TechnologyUniversity of Illinois Urbana-ChampaignUrbanaUSA
  3. 3.Departments of Bioengineering, Mechanical Science and Engineering, Electrical and Computer Engineering, Chemical and Biomolecular Engineering and ChemistryUniversity of Illinois Urbana-ChampaignUrbanaUSA

Personalised recommendations