Advertisement

Ultrafast Nonlinear Plasmonics

  • Fabrice ValléeEmail author
  • Natalia Del Fatti
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 15)

Abstract

The mechanisms at the origin of the ultrafast third-order optical nonlinearity of metallic and plasmonic materials are described focusing on the dominant resonant processes associated to energy absorption. Optical nonlinearity is discussed in terms of ultrafast modifications of the dielectric function of the constituting metal as a consequence of electron and lattice heating, using a bulk-like model. Based on this description, the time- and spectral-dependent nonlinear changes of the optical response of plasmonic materials due to interaction with a femtosecond light pulse are modeled. The results are illustrated in the case of an individual gold nanoparticle for different shapes (sphere, ellipsoid, and rod), and for an ensemble of gold nanoparticles dispersed in a dielectric matrix. The same approach can be extended to more complex plasmonic materials or meta-materials.

Keywords

Surface plasmon Nonlinear optics Ultrafast dynamics 

Notes

Acknowledgments

The authors wish to thank D. Mongin, H. Baida, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, for their contributions to parts of this work. NDF acknowledges support by Institut Universitaire de France (IUF).

References

  1. 1.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley, New York, 1998)Google Scholar
  2. 2.
    A. Kawabata, R. Kubo, J. Phys. Soc. Jap. 21, 1765 (1966)Google Scholar
  3. 3.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)Google Scholar
  4. 4.
    S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, Berlin, 2007)Google Scholar
  5. 5.
    F. Vallée, in Nanoscience: Nanomaterials and Nanochemestry, ed. by C. Dupas, P. Houdy, M. Lahmani (Springer, Berlin, 2007), p. 197Google Scholar
  6. 6.
    R. Kubo, A. Kawabata, S. Kobayashi, Ann. Rev. Mater. Sci. 14, 49 (1984)Google Scholar
  7. 7.
    A.M. El-Sayed, A.S. Majied, Colloids Surf. A 246, 61 (2004)Google Scholar
  8. 8.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)Google Scholar
  9. 9.
    L.M. Liz-Marzan, Langmuir 22, 32 (2006)Google Scholar
  10. 10.
    B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, C. Chong, Nat. Mater. 9, 707 (2010)Google Scholar
  11. 11.
    J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 485 (2003)Google Scholar
  12. 12.
    J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Bronger, Nat. Mat. 9, 196 (2010)Google Scholar
  13. 13.
    K. Willets, R. Van Duyne, Ann. Rev. Phys. Chem. 58, 267 (2007)Google Scholar
  14. 14.
    M.L. Brongersma, V.M. Shalaev, Science 328, 440 (2010)Google Scholar
  15. 15.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Nature 391, 667 (1998)Google Scholar
  16. 16.
    J. Krenn, A. Dereux, J.C. Weeber, E. Bourillot, Y. Lacroute, J.P. Goudonnet, G. Schider, W. Gotschy, F.R. Aussenegg, C. Girard, Phys. Rev. Lett. 83, 2590 (1999)Google Scholar
  17. 17.
    S.A. Maier, H.A. Atwater, J. Appl. Phys. 98, 011101 (2005)Google Scholar
  18. 18.
    M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Nature 446, 301 (2007)Google Scholar
  19. 19.
    A.S. Kirakosyan, M. Tong, T.V. Shahbazyan, Z.V. Vardeny, Appl. Phys. B 93, 131 (2008)Google Scholar
  20. 20.
    K.F. MacDonald, Z.L. Sámson, M.I. Stockman, N.I. Zheludev, Nat. Photonics 3, 55 (2009)Google Scholar
  21. 21.
    M. Pohl, V.I. Belotelov, I.A. Akimov, S. Kasture, A.S. Vengurlekar, A.V. Gopal, A.K. Zvezdin, D.R. Yakovlev, M. Bayer, Phys. Rev. B 85, 081401(R) (2012)Google Scholar
  22. 22.
    C. Ropers, D.J. Park, G. Stibenz, G. Steinmeyer, J. Kim, D. Kim, C. Lienau, Phys. Rev. Lett. 94, 113901 (2005)Google Scholar
  23. 23.
    N. Rotenberg, J.N. Caspers, H.M. van Driel, Phys. Rev. B 80, 245420 (2009)Google Scholar
  24. 24.
    Z.L. Samson, K.F. MacDonald, N.I. Zheludev, J. Opt. A 11, 114031 (2009)Google Scholar
  25. 25.
    S.I. Anisimov, B.L. Kapeliovitch, T.L. Perelman, Sov. Phys. JETP 39, 375 (1974)Google Scholar
  26. 26.
    N. Del Fatti, C. Voisin, M. Achermann, S. Tzortzakis, D. Christofilos, F. Vallée, Phys. Rev. B 61, 16956 (2000)Google Scholar
  27. 27.
    G.L. Eesley, Phys. Rev. Lett. 51, 2140 (1983)Google Scholar
  28. 28.
    J.G. Fujimoto, J.M. Liu, E.P. Ippen, N. Bloembergen, Phys. Rev. Lett. 53, 1837 (1984)Google Scholar
  29. 29.
    C.K. Sun, F. Vallée, L. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 50, 15337 (1994)Google Scholar
  30. 30.
    F. Vallée, C.R. Acad, Science 2, 1469 (2001)Google Scholar
  31. 31.
    G.L. Eesley, Phys. Rev. B 33, 2144 (1986)Google Scholar
  32. 32.
    N. Del Fatti, F. Vallée, C. R. Phys. 3, 365 (2002)Google Scholar
  33. 33.
    G.V. Hartland, Chem. Rev. 111, 3858 (2011)Google Scholar
  34. 34.
    M. Kiel, H. Möhwald, M. Bargheer, Phys. Rev. B 84, 165121 (2011)Google Scholar
  35. 35.
    S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999)Google Scholar
  36. 36.
    T. Tokizaki, A. Nakamura, S. Kavelo, K. Uchida, S. Omi, H. Tanji, Y. Asahara, Appl. Phys. Lett. 65, 941 (1994)Google Scholar
  37. 37.
    C. Voisin, N. Del Fatti, D. Christofilos, F. Vallée, J. Phys. Chem B 105, 2264 (2001)Google Scholar
  38. 38.
    H. Baida, D. Mongin, D. Christofilos, G. Bachelier, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, Phys. Rev. Lett. 107, 057402 (2011)Google Scholar
  39. 39.
    G.V. Hartland, Chem. Sci. 1, 303 (2010)Google Scholar
  40. 40.
    T. Itoh, T. Asahi, H. Masuhara, Appl. Phys. Lett. 79, 1667 (2001)Google Scholar
  41. 41.
    Y. Matsuo, K. Sasaki, Japan. J. Appl. Phys. 40, 6143 (2001)Google Scholar
  42. 42.
    O.L. Muskens, N. Del Fatti, F. Vallée, Nano Lett. 6, 552 (2006)Google Scholar
  43. 43.
    M. Pelton, M. Liu, S. Park, N. Scherer, P. Guyot-Sionnest, Phys. Rev. B 73, 155419 (2006)Google Scholar
  44. 44.
    M.A. Van Dijk, M. Lippitz, M. Orrit, Phys. Rev. Lett. 95, 267406 (2005)Google Scholar
  45. 45.
    H. Staleva, G.V. Hartland, Adv. Funct. Mater. 18, 1 (2008)Google Scholar
  46. 46.
    A. Anderson, K.S. Deryckx, X.G. Xu, G. Steinmeyer, M.B. Raschke, Nano Lett. 10, 2519 (2010)Google Scholar
  47. 47.
    C. Guillon, P. Langot, N. Del Fatti, F. Vallée, New J. Phys. 5, 13 (2003)Google Scholar
  48. 48.
    T. Hanke, G. Krauss, D. Trautlein, B. Wild, R. Bratschitsch, A. Leitenstorfer, Phys. Rev. Lett. 103, 257404 (2009)Google Scholar
  49. 49.
    B. Lamprecht, J.R. Krenn, A. Leitner, F.R. Aussenegg, Phys. Rev. Lett. 83, 4421 (1999)Google Scholar
  50. 50.
    A. Arbouet, C. Voisin, D. Christofilos, P. Langot, N. Del Fatti, F. Vallée, J. Lermé, G. Celep, E. Cottancin, M. Gaudry, M. Pellarin, M. Broyer, M. Maillard, M.P. Pileni, M. Treguer, Phys. Rev. Lett. 90, 177401 (2003)Google Scholar
  51. 51.
    C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, B. Prével, E. Cottancin, J. Lermé, M. Pellarin, M. Broyer, Phys. Rev. Lett. 85, 2200 (2000)Google Scholar
  52. 52.
    C. Voisin, D. Christofilos, P.A. Loukakos, N. Del Fatti, F. Vallée, J. Lermé, M. Gaudry, E. Cottancin, M. Pellarin, M. Broyer, Phys. Rev. B 69, 195416 (2004)Google Scholar
  53. 53.
    C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, Eur. Phys. J. D 16, 139 (2001)Google Scholar
  54. 54.
    J. Burgin, P. Langot, N. Del Fatti, F. Vallée, W. Huang, M.A. El Sayed, J. Phys. Chem. C 112, 11231 (2008)Google Scholar
  55. 55.
    N. Del Fatti, C. Voisin, D. Christofilos, F. Vallée, C. Flytzanis, J. Phys. Chem. A 104, 4321 (2000)Google Scholar
  56. 56.
    G.V. Hartland, Annu. Rev. Phys. Chem. 57, 403 (2006)Google Scholar
  57. 57.
    V. Juvé, A. Crut, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, Nano Lett. 10, 1853 (2010)Google Scholar
  58. 58.
    D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, J. Appl. Phys. 93, 793 (2003)Google Scholar
  59. 59.
    V. Juvé, M. Scardamaglia, P. Maioli, A. Crut, S. Merabia, L. Joly, N. Del Fatti, F. Vallée, Phys. Rev. B 80, 195406 (2009)Google Scholar
  60. 60.
    N. Del Fatti, F. Vallée, C. Flytzanis, Y. Hamanaka, A. Nakamura, Chem. Phys. 251, 215 (2000)Google Scholar
  61. 61.
    D.T. Owens, C. Fuentes-Hernandez, J.M. Hales, J.W. Perry, B. Kippelen, J. Appl. Phys. 107, 123114 (2010)Google Scholar
  62. 62.
    J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, P.-F. Brevet, Nano Lett. 10, 1717 (2010)Google Scholar
  63. 63.
    M. Lippitz, M.A. van Dijk, M. Orrit, Phys. Rev. Lett. Nano Lett. 5, 799 (2005)Google Scholar
  64. 64.
    S. Palomba, M. Danckwerts, L. Novotny, J. Opt. A 11, 114030 (2009)Google Scholar
  65. 65.
    Y. Guillet, E. Charron, B. Palpant, Phys. Rev. B 79, 195432 (2009)Google Scholar
  66. 66.
    N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt-Saunders, Tokyo, 1981)Google Scholar
  67. 67.
    R.N. Gurzhi, Sov. Phys. JETP 35, 673 (1959)Google Scholar
  68. 68.
    J.B. Smith, H. Ehrenreich, Phys. Rev. B 25, 923 (1982)Google Scholar
  69. 69.
    C.-Yi Tsai, C.-Yao Tsai , C.-H. Chen, T.-L. Sung, T.-Y. Wu, F.-P. Shih, IEEE J. Quant. Electr. 34, 552 (1998)Google Scholar
  70. 70.
    P.B. Allen, Phys. Rev. Lett. 59, 1460 (1987)Google Scholar
  71. 71.
    H. Hovel, S. Fritz, A. Hilger, U. Kreibig, M. Vollmer, Phys. Rev. B 48, 18178 (1993)Google Scholar
  72. 72.
    F. Hache, D. Ricard, C. Flytzanis, J. Opt. Soc. Am. B 3, 1647 (1986)Google Scholar
  73. 73.
    H. Baida, P. Billaud, S. Marhaba, D. Christofilos, E. Cottancin, A. Crut, J. Lermé, P. Maioli, M. Pellarin, M. Broyer, N. Del Fatti, F. Vallée, A. Sánchez-Iglesias, I. Pastoriza-Santos, L.M. Liz-Marzán, Nano Lett. 9, 3463 (2009)Google Scholar
  74. 74.
    E.A. Coronado, G.C. Schatz, J. Chem. Phys. 119, 3926 (2003)Google Scholar
  75. 75.
    J. Lermé, H. Baida, C. Bonnet, M. Broyer, M. Cottancin, A. Crut, P. Maioli, N. Del Fatti, F. Vallée, M. Pellarin, J. Phys. Chem. Lett. 1, 2922 (2010)Google Scholar
  76. 76.
    C. Flytzanis, F. Hache, M.C. Klein, D. Ricard, P. Roussignol, in Progress in Optics, vol. XXIX, ed. by E. Wold (North Holland, Amsterdam, 1991), p. 321Google Scholar
  77. 77.
    R. Rosei, F. Antonangeli, U.M. Grassano, Surf. Sci. 37, 689 (1973)Google Scholar
  78. 78.
    R. Rosei, Phys. Rev. B 10, 474 (1974)Google Scholar
  79. 79.
    R. Rosei, C.H. Culp, J.H. Weaver, Phys. Rev. B 10, 484 (1974)Google Scholar
  80. 80.
    N.E. Christensen, B.O. Seraphin, Phys. Rev B 4, 3321 (1971)Google Scholar
  81. 81.
    M. Guerrisi, R. Rosei, P. Winsemius, Phys. Rev. B 12, 557 (1975)Google Scholar
  82. 82.
    P. Winsemius, M. Guerrisi, R. Rosei, Phys. Rev. B 12, 4570 (1975)Google Scholar
  83. 83.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)Google Scholar
  84. 84.
    N.E. Christensen, Phys. Stat. Solidi B 54, 551 (1972)Google Scholar
  85. 85.
    D. Brorson, A. Kazeroonian, J.S. Modera, D.W. Face, T.K. Cheng, E.P. Ippen, M.S. Dresselhaus, G. Dresselhaus, Phys. Rev. Lett. 64, 2172 (1990)Google Scholar
  86. 86.
    N. Del Fatti, C. Voisin, F. Chevy, F. Vallée, C. Flytzanis, J. Chem. Phys. 110, 11484 (1999)Google Scholar
  87. 87.
    M. Nisoli, S. De Silvestri, A. Cavalleri, A.M. Malvezzi, A. Stella, G. Lanzani, P. Cheyssac, R. Kofman, Phys. Rev. B 55, R13424 (1997)Google Scholar
  88. 88.
    C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Phys. Rev. B 34, 4129 (1986)Google Scholar
  89. 89.
    T. Vartanyan, M. Simon, F. Träger, Appl. Phys. B 68, 425 (1999)Google Scholar
  90. 90.
    J. Bosbach, C. Hendrich, F. Stietz, T. Vartanyan, F. Träger, Phys. Rev. Lett. 89, 257404 (2002)Google Scholar
  91. 91.
    F. Stietz, J. Bosbach, T. Wenzel, T. Vartanyan, A. Goldmann, F. Träger, Phys. Rev. Lett. 84, 5644 (2000)Google Scholar
  92. 92.
    T. Ziegler, C. Hendrich, F. Hubenthal, T. Vartanyan, F. Träger, Chem. Phys. Lett. 3(86), 319 (2004)Google Scholar
  93. 93.
    A. Knoesel, A. Hotzel, M. Wolf, Phys. Rev. B 57, 12812 (1998)Google Scholar
  94. 94.
    H. Petek, S. Ogawa, Progr. Surf. Sci. 56, 239 (1997)Google Scholar
  95. 95.
    V.P. Drachev, E.N. Khaliullin, W. Kim, F. Alzoubi, S.G. Rautian, V.P. Safonov, R.L. Armstrong, V.M. Shalaev, Phys. Rev. B 69, 035318 (2004)Google Scholar
  96. 96.
    R.A. Farrer, F.L. Butterfield, V.W. Chen, J.T. Fourkas, Nano Lett. 5, 1139 (2005)Google Scholar
  97. 97.
    R. Matzdorf, A. Gerlach, F. Theilmann, G. Meister, A. Goldmann, Appl. Phys. B 68, 393 (1999)Google Scholar
  98. 98.
    R. Knorren, K.H. Bennemann, R. Burgermeister, M. Aeschlimann, Phys. Rev. B 61, 9427 (2000)Google Scholar
  99. 99.
    J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1969)Google Scholar
  100. 100.
    S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Phys. Rev. Lett. 59, 1962 (1987)Google Scholar
  101. 101.
    C. Suarez, W.E. Bron, T. Juhasz, Phys. Rev. Lett. 75, 4536 (1995)Google Scholar
  102. 102.
    D. Pines, P. Nozières, The Theory of Quantum Liquids (Benjamin, New York, 1966)Google Scholar
  103. 103.
    J.I. Juaristi, M. Alducin, I. Nagy, J. Phys. Condens. Matter 15, 7859 (2003)Google Scholar
  104. 104.
    Z. Lin, L.V. Zhigilei, Phys. Rev. B 77, 075133 (2008)Google Scholar
  105. 105.
    T.V. Shahbazyan, I.E. Perakis, J.-Y. Bigot, Phys. Rev. Lett. 81, 3120 (1998)Google Scholar
  106. 106.
    T.V. Shahbazyan, I.E. Perakis, Chem. Phys. 251, 37 (2000)Google Scholar
  107. 107.
    T.V. Shahbazyan, I.E. Perakis, Phys. Rev. B 60, 9090 (1999)Google Scholar
  108. 108.
    M.I. Kaganov, I.M. Lifshitz, L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957)Google Scholar
  109. 109.
    N. Del Fatti, A. Arbouet, F. Vallée, Appl. Phys. B 84, 175 (2006)Google Scholar
  110. 110.
    R. Groeneveld, R. Sprik, A. Lagendijk, Phys. Rev. B 51, 11433 (1995)Google Scholar
  111. 111.
    N. Del Fatti, R. Bouffanais, F. Vallée, C. Flytzanis, Phys. Rev. Lett. 81, 922 (1998)Google Scholar
  112. 112.
    R.W. Schoenlein, W.Z. Lin, J.G. Fujimoto, G.L. Eesley, Phys. Rev. Lett. 58, 1680 (1987)Google Scholar
  113. 113.
    C.K. Sun, F. Vallée, L.H. Acioli, E.P. Ippen, J.G. Fujimoto, Phys. Rev. B 48, 12365 (1993)Google Scholar
  114. 114.
    P. Grua, J.P. Morreeuw, H. Bercegol, G. Jonusauskas, F. Vallée, Phys. Rev. B 68, 035424 (2003)Google Scholar
  115. 115.
    V. Halté, J.-Y. Bigot, B. Palpant, M. Broyer, B. Prével, A. Pérez, Appl. Phys. Lett. 75, 3799 (1999)Google Scholar
  116. 116.
    Y. Hamanaka, J. Kuwabata, I. Tanahashi, S. Omi, A. Nakamura, Phys. Rev. B 63, 104302 (2001)Google Scholar
  117. 117.
    Z.B. Ge, D.G. Cahill, P.V. Braun, J. Phys. Chem. B 108, 18870 (2004)Google Scholar
  118. 118.
    M. Hu, G.V. Hartland, J. Phys. Chem. B 106, 7029 (2002)Google Scholar
  119. 119.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids (Oxford University Press, Oxford, 1959)Google Scholar
  120. 120.
    A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, G. von Plessen, Phys. Rev. B 70, 195423 (2004)Google Scholar
  121. 121.
    E.D. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989)Google Scholar
  122. 122.
    J.-Y. Bigot, J.-C. Merle, O. Cregut, A. Daunois, Phys. Rev. Lett. 75, 4702 (1995)Google Scholar
  123. 123.
    R.N. Gurzhi, M. Ya.Azbel’, H.P. Lin, Sov. Phys. Solid State 5, 554 (1963)Google Scholar
  124. 124.
    C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, Physica B 316, 89 (2002)Google Scholar
  125. 125.
    G.R. Parkins, W.E. Lawrence, R.W. Christy, Phys. Rev. B 23, 6408 (1981)Google Scholar
  126. 126.
    A. Crut, P. Maioli, N. Del Fatti, F. Vallée, Phys. Chem. Chem. Phys. 11, 5882 (2009)Google Scholar
  127. 127.
    F. Abelès, in Optics of Thin Films, ed. by A.C.S. Van Heel. Advanced Optical Techniques (North Holland, New York, 1967), p. 144Google Scholar
  128. 128.
    O. Muskens, D. Christofilos, N. Del Fatti, J. Opt. A 8, S264 (2006)Google Scholar
  129. 129.
    R.F. Haglund, in Handbook of Optical Properties, vol. 2, ed. by R.E. Hummel, P. Wissmann (CRC Press, New York, 1997), p. 191Google Scholar
  130. 130.
    D. Ricard, in Nonlinear Optical Materials: Principles and Applications, ed. by V. Degiorgio, C. Flytzanis (IOS Press, Amsterdam, 1995), p. 289Google Scholar
  131. 131.
    A. Arbouet, D. Christofilos, N. Del Fatti, F. Vallée, J.-R. Huntzinger, L. Arnaud, P. Billaud, M. Broyer, Phys. Rev. Lett. 93, 127401 (2004)Google Scholar
  132. 132.
    S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, N.F. Scherer, J. Phys. Chem. C 111, 116 (2007)Google Scholar
  133. 133.
    Y.R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, Hoboken, New Jersey, 1984)Google Scholar
  134. 134.
    N.V. Voshchinnikov, V.G. Farafonov, Astrophys. Space Sci. 204, 19 (1993)Google Scholar
  135. 135.
    O. Muskens, G. Bachelier, N. Del Fatti, F. Vallée, A. Brioude, X. Jiang, M.P. Pileni, J. Phys. Chem. C 112, 8917 (2008)Google Scholar
  136. 136.
    O.L. Muskens, P. Billaud, M. Broyer, N. Del Fatti, F. Vallée, Phys. Rev. B 78, 205410 (2008)Google Scholar
  137. 137.
    N. Del Fatti, F. Vallée, Appl. Phys. B 73, 383 (2001)Google Scholar
  138. 138.
    P. Billaud, S. Marhaba, E. Cottancin, L. Arnaud, G. Bachelier, C. Bonnet, N. Del Fatti, J. Lermé, F. Vallée, J.-L. Vialle, M. Broyer, M. Pellarin, J. Phys. Chem. C 112, 978 (2008)Google Scholar
  139. 139.
    P. Zijlstra, A.L. Tchebotareva, J.W.M. Chon, M. Gu, M. Orrit, Nano Lett. 8, 3493 (2008)Google Scholar
  140. 140.
    M.Y. Sfeir, H. Qian, K. Nobusada, R. Jin, J. Phys. Chem. C 115, 6200 (2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.FemtoNanoOptics GroupLASIM, CNRS and Universtié Lyon 1VilleurbanneFrance
  2. 2.Institut Lumière Matière, CNRS and Universtié Lyon 1VilleurbanneFrance

Personalised recommendations