Advertisement

Spinoptics in Plasmonics

  • Erez HasmanEmail author
  • Vladimir Kleiner
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 15)

Abstract

We review our work on effects of spin-symmetry breaking in nanoscale structures caused by spin-orbit interaction. The spin-based effects offer an unprecedented ability to control light and its polarization state in nanometer-scale optical devices, thereby facilitating a variety of applications related to nano-photonics. The polarization-dependent effects are considered as result of a geometric phase arising from the interaction of light with an anisotropic and inhomogeneous nanoscale structure. The discussed phenomena inspire one to investigate other spin-based plasmonic effects and to propose a new generation of optical elements for nano-photonic applications, as a constituent of a new branch in optics—spinoptics.

Keywords

Plasmon Spin-orbit interaction Spinoptics 

References

  1. 1.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998)Google Scholar
  2. 2.
    H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Beaming light from a subwavelength aperture. Science 297, 820–822 (2002)Google Scholar
  3. 3.
    F. López-Tejeira, S.G. Rodrigo et al., Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys. 3, 324–328 (2007)Google Scholar
  4. 4.
    L. Yin, V.K. Vlasko-Vlasov et al., Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005)Google Scholar
  5. 5.
    W. Nomura, M. Ohtsu, T. Yatsui, Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion. Appl. Phys. Lett. 86, 181108–181111 (2005)Google Scholar
  6. 6.
    S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.Y. Laluet, T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)Google Scholar
  7. 7.
    G. Gay, O. Alloschery, B. Viaris de Lesegno, J. Weiner, H. J. Lezec, Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry. Phys. Rev. Lett. 96, 213901–213904 (2006)Google Scholar
  8. 8.
    J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, C. Yong, Coherent emission of light by thermal sources. Nature 416, 61–64 (2002)Google Scholar
  9. 9.
    N. Dahan, A. Niv, G. Biener, Y. Gorodetski, V. Kleiner, E. Hasman, Enhanced coherency of thermal emission: beyond the limitation imposed by delocalized surface waves. Phys. Rev. B 76, 045427–045425 (2007)Google Scholar
  10. 10.
    F.J. Garcia-Vidal, J.B. Pendry, Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77, 1163–1166 (1996)Google Scholar
  11. 11.
    S.L. Prosvirnin, N.I. Zheludev, Polarization effects in the diffraction of light by a planar chiral structure. Phys. Rev. E 71, 037603–037604 (2005)Google Scholar
  12. 12.
    A.V. Krasavin, A.S. Schwanecke, N.I. Zheludev, Polarization conversion and “focusing” of light propagating through a small chiral hole in a metallic screen. Appl. Phys. Lett. 86, 201105–201103 (2005)Google Scholar
  13. 13.
    N. Fang, H. Lee, C. Sun, X. Zhang, Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005)Google Scholar
  14. 14.
    I.I. Smolyaninov, Y. Hung, C. Davis, Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007)Google Scholar
  15. 15.
    K.Y. Bliokh, A. Niv, V. Kleiner, E. Hasman, Geometrodynamics of spinning light. Nat. Photonics 2, 748–753 (2008)Google Scholar
  16. 16.
    Y. Gorodetski, A. Niv, V. Kleiner, E. Hasman, Observation of spin-based plasmonic effect in nanoscale structures. Phys. Rev. Lett. 101, 043903–043904 (2008)Google Scholar
  17. 17.
    W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)Google Scholar
  18. 18.
    E. Majorana, Atomi orientati in campo magnetico variabile. Nuovo Cim. 9, 43 (1932)Google Scholar
  19. 19.
    J.H. Hannay, The Majorana representation of polarization, and the Berry phase of light. J. Mod. Opt. 45, 1001–1008 (1998)Google Scholar
  20. 20.
    M.V. Berry, The adiabatic phase and Pancharatnam’s phase for polarized light. J. Mod. Opt. 34, 1401–1407 (1987)Google Scholar
  21. 21.
    Z. Bomzon, V. Kleiner, E. Hasman, Pancharatnam-Berry phase in space-variant polarization state manipulations with subwavelength gratings. Opt. Lett. 26, 1424–1426 (2001)Google Scholar
  22. 22.
    Z. Bomzon, V. Kleiner, E. Hasman, Formation of radially and azimuthally polarized light using space-variant subwavelength metal stripe gratings. Appl. Phys. Lett. 79, 1587–1589 (2001)Google Scholar
  23. 23.
    N.B. Baranova, A.Y. Savchenko, B.Y. Zel’dovich, Transverse shift of a focal spot due to switching of the sign of circular polarization. JETP Lett. 59, 232–235 (1994)Google Scholar
  24. 24.
    B. Zel’dovich, Ya, N.D. Kundikova, L.F. Rogacheva, Observed transverse shift of a focal spot upon a change in the sign of circular polarization. JETP Lett. 59, 766–769 (1994)Google Scholar
  25. 25.
    A. Kavokin, G. Malpuech, M. Glazov, Optical spin hall effect. Phys. Rev. Lett. 95, 136601–136604 (2005)Google Scholar
  26. 26.
    C. Leyder, M. Romanelli, JPh Karr, E. Giacobino, T.C.H. Liew, M.M. Glazov, A.V. Kavokin, G. Malpuech, A. Bramati, Observation of the optical spin Hall effect. Nature 3, 628–631 (2007)Google Scholar
  27. 27.
    W. Gerlach, O. Stern, Das magnetische moment des silberatoms. Z. Phys. 9, 353–355 (1922)Google Scholar
  28. 28.
    F. Zhou, Topological spin pumps: the effect of spin rotation on quantum pumps. Phys. Rev. B 70, 125321–18 (2004)Google Scholar
  29. 29.
    J.H. Poynting, The wave motion of a revolving shaft, and suggestion as to the angular momentum in the beam of circularly polarised light. Proc. Roy. Soc. A 82, 560–567 (1909)Google Scholar
  30. 30.
    R.A. Beth, Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936)Google Scholar
  31. 31.
    S.J. Van Enk, G. Nienheuis, Eigenfunction description of laser beams and orbital angular momentum of light. Opt. Commun. 94, 147–158 (1992)Google Scholar
  32. 32.
    A.T. O’Neil, I. MacVicar, L. Allen, M.J. Padgett, Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601–4 (2002)Google Scholar
  33. 33.
    L. Allen, M.W. Beijersbergen, R.S. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8190 (1992)Google Scholar
  34. 34.
    Y.N. Gorodetski, I. Shitrit, V. Bretner, E. Kleiner, Hasman, Observation of optical spin symmetry breaking in nanoapertures. Nano Lett. 9, 3016–3019 (2009)Google Scholar
  35. 35.
    N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner, E. Hasman, Optical spin hall effects in plasmonic chains. Nano Lett. 11, 2038–2042 (2011)Google Scholar
  36. 36.
    V.S. Liberman, B. Zel’dovich, Ya. Spin-orbit interaction of a photon in an inhomogeneous medium. Phys. Rev. A 46, 5199–5207 (1992)Google Scholar
  37. 37.
    A. Niv, Y. Gorodetski, V. Kleiner, E. Hasman, Topological spin-orbit interaction of light in anisotropic inhomogeneous subwavelength structures. Opt. Lett. 33, 2910–2912 (2008)Google Scholar
  38. 38.
    K.Y. Bliokh, Y. Gorodetski, V. Kleiner, E. Hasman, Coriolis effect in optics: unified geometric phase and spin-hall effect. Phys. Rev. Lett. 101, 030404–4 (2008)Google Scholar
  39. 39.
    B.A. Garetz, Angular Doppler effect. J. Opt. Soc. Am. 71, 609–611 (1981)Google Scholar
  40. 40.
    A.S. Schwanecke, V.A. Fedotov, V.V. Khardikov, S.L. Prosvirnin, Y. Chen, N.I. Zheludev, Nanostructured metal film with asymmetric optical transmission. Nano Lett. 8, 2940–2943 (2008)Google Scholar
  41. 41.
    M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401–4 (2005)Google Scholar
  42. 42.
    A. Drezet, C. Genet, J.-Y. Laluet, T.W. Ebbesen, Optical chirality without optical activity: how surface plasmons give a twist to light. Opt. Express 16, 12559–12570 (2008)Google Scholar
  43. 43.
    T. Ohno, S. Miyanishi, Study of surface plasmon chirality induced by Archimedes’ spiral grooves. Opt. Express 14, 6285–6290 (2006)Google Scholar
  44. 44.
    M.J. Lockyear, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, Microwave transmission through a single subwavelength annular aperture in a metal plate. Phys. Rev. Lett. 94, 193902 (2005)Google Scholar
  45. 45.
    A. Niv, G. Biener, V. Kleiner, E. Hasman, Manipulation of the Pancharatnam phase in vectorial vortices. Opt. Express 14, 4208–4220 (2006)Google Scholar
  46. 46.
    Y. Gorodetski, S. Nechayev, V. Kleiner, E. Hasman, Plasmonic Aharonov-Bohm effect: optical spin as the magnetic flux parameter. Phys. Rev. B 82, 125433–4 (2010)Google Scholar
  47. 47.
    Y. Aharonov, D. Bohm, Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959)Google Scholar
  48. 48.
    M.V. Berry, R.G. Chambers, M.D. Large, C. Upstill, J.C. Walmsley, Wavefront dislocations in the Aharonov-Bohm effect and its water wave analogue. Eur. J. Phys. 1, 154–162 (1980)Google Scholar
  49. 49.
    C. Coste, F. Lund, M. Umeki, Shallow water scattering of dislocated wave fronts by vertical vorticity and the Aharonov-Bohm effect. I. Phys. Rev. E. 60, 4908–4916 (1999)Google Scholar
  50. 50.
    F. López-Tejeira, S.G. Rodrigo, L. Martin-Moreno, F.J. Garcia-Vidal, E. Devaux, T.W. Ebbesen, J.R. Krenn, I.P. Radko, S.I. Bozhevolnyi, M.U. González, J.C. Weeber, A. Dereux, Efficient unidirectional nanoslit couplers for surface plasmons. Nat. Phys. 3, 324–328 (2007)Google Scholar
  51. 51.
    L. Aigouy, P. Lalanne, J.P. Hugonin, G. Julié, V. Mathet, M. Mortier, Near-field analysis of surface waves launched at nanoslit apertures. Phys. Rev. Lett. 98, 153902–4 (2007)Google Scholar
  52. 52.
    S.G. Lipson, Berry’s phase in optical interferometry: a simple derivation. Opt. Lett. 15, 154–155 (1990)Google Scholar
  53. 53.
    K.Y. Bliokh, Geometrodynamics of polarized light: berry phase and spin hall effect in a gradient-index medium. J. Opt. A: Pure Appl. Opt. 11, 094009–14 (2009)Google Scholar
  54. 54.
    Y. Aharonov, A. Casher, Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319–321 (1984)Google Scholar
  55. 55.
    R. Pugatch, M. Shuker, O. Firstenberg, A. Ron, N. Davidson, Topological stability of stored optical vortices. Phys. Rev. Lett. 98, 203601–4 (2007)Google Scholar
  56. 56.
    N.D. Mermin, The topological theory of defects in ordered media. Rev. Mod. Phys. 51, 591–648 (1979)Google Scholar
  57. 57.
    H. Saito, Y. Kawaguchi, M. Ueda, Topological defect formation in a quenched ferromagnetic Bose-Einstein condensates. Phys. Rev. A 75, 013621–10 (2007)Google Scholar
  58. 58.
    F. de Juan, A. Cortijo, M.A.H. Vozmediano, A. Cano, Aharonov-Bohm interferences from local deformations in graphene. Nature. Phys. 7, 810–815 (2011)Google Scholar
  59. 59.
    R. Blaauwgeers, V.B. Eltsov, M. Krusius, J.J. Ruohio, R. Schanen, G.E. Volovik, Double-quantum vortex in superfluid \(^{3}\)He-A. Nature 404, 471–473 (2000)Google Scholar
  60. 60.
    G. Goren, I. Procaccia, S. Rasenat, V. Steinberg, Interactions and dynamics of topological defects: theory and experiments near the onset of weak turbulence. Phys. Rev. Lett. 63, 1237–1240 (1989)Google Scholar
  61. 61.
    R.L. Davis, Texture: a cosmological topological defect. Phys. Rev. D 35, 3705–3708 (1987)Google Scholar
  62. 62.
    E. Brasselet, C. Loussert, Electrically controlled topological defects in liquid crystals as tunable spin-orbit encoders for photons. Opt. Lett. 36, 719–721 (2011)Google Scholar
  63. 63.
    J.F. Nye, M.V. Berry, Dislocations in wave trains. Proc. R. Soc. London, Ser. A, 336, 165–190 (1974)Google Scholar
  64. 64.
    L. Yin, V.K. Vlasko-Vlasov, J. Pearson, J.M. Hiller, J. Hua, U. Welp, D.E. Brown, C.W. Kimball, Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005)Google Scholar
  65. 65.
    J.-Y. Laluet, A. Drezet, C. Genet, T.W. Ebbesen, Generation of surface plasmons at single subwavelength slits: from slit to ridge plasmon. N. J. Phys. 10, 105014–9 (2008)Google Scholar
  66. 66.
    R. Zia, M.L. Brongersma, Surface plasmon polariton analogue to Young’s double-slit experiment. Nature. Nanotechnol. 2, 426–429 (2007)Google Scholar
  67. 67.
    N. Shitrit, S. Nechayev, V. Kleiner, E. Hasman, Spin-dependent plasmonics based on interfering topological defects. Nano Lett. 12, 1620–1623 (2012)Google Scholar
  68. 68.
    O. Hosten, P. Kwiat, Observation of the spin hall effect of light via weak measurements. Science 319, 787–790 (2008)Google Scholar
  69. 69.
    M. Hentschel, M. Saliba, R. Vogelgesang, H. Giessen, A.P. Alivisatos, N. Liu, Transition from isolated to collective modes in plasmonic oligomers. Nano Lett. 10, 2721–2726 (2010)Google Scholar
  70. 70.
    S.A. Maier, M.L. Brongersma, P.G. Kik, H.A. Atwater, Observation of near-field coupling in metal nanoparticle chains using far-field polarization spectroscopy. Phys. Rev. B 65, 193408–4 (2002)Google Scholar
  71. 71.
    R. Gordon, A.G. Brolo, A. McKinnon, A. Rajora, B. Leathem, K.L. Kavanagh, Strong polarization in the optical transmission through elliptical nanohole arrays. Phys. Rev. Lett. 92, 037401–4 (2004)Google Scholar
  72. 72.
    K.J.K. Koerkamp, S. Enoch, F.B. Segerink, N.F. van Hulst, L. Kuipers, Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys. Rev. Lett. 92, 183901–4 (2004)Google Scholar
  73. 73.
    J.D. Koralek, C.P. Weber, J. Orenstein, B.A. Bernevig, S.-C. Zhang, S. Mack, D.D. Awschalom, Emergence of the persistent spin helix in semiconductor quantum wells. Nature 458, 610–613 (2009)Google Scholar
  74. 74.
    H.I. Sztul, R.R. Alfano, Double-slit interference with Laguerre-Gaussian beams. Opt. Lett. 31, 999–1001 (2006)Google Scholar
  75. 75.
    E. Brasselet, N. Murazawa, H. Misawa, S. Juodkazis, Optical vortices from liquid crystal droplets. Phys. Rev. Lett. 103, 103903–4 (2009)Google Scholar
  76. 76.
    M.S. Soskin, V.N. Gorshkov, M.V. Vasnetsov, J.T. Malos, N.R. Heckenberg, Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A 56, 4064–4075 (1997)Google Scholar
  77. 77.
    P. Zeeman, On the influence of magnetism on the nature of the light emitted by a substance. Phil. Mag. 43, 226–239 (1897)Google Scholar
  78. 78.
    E.I. Rashba, Properties of semiconductors with an extremum loop. 1. Cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop. Sov. Phys. Solid State 2, 1109 (1960)Google Scholar
  79. 79.
    K. Ishizaka, M.S. Bahramy, H. Murakawa, M. Sakano, T. Shimojima, T. Sonobe, K. Kiozumi, S. Shin, H. Miyahara, A. Kimura, K. Miamoto, T. Okuda, H. Namatame, M. Taniguchi, R. Arita, N. Nagaosa, K. Kobayashi, Y. Murakami, R. Kumai, Y. Kaneko, Y. Onose, Y. Tokura, Giant Rashba-type spin splitting in bulk BiTel. Nat. Mater. 10, 521–526 (2011)Google Scholar
  80. 80.
    G. Dresselhaus, Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955)Google Scholar
  81. 81.
    N. Dahan, Y. Gorodetski, K. Frischwasser, V. Kleiner, E. Hasman, Geometric doppler effect: spin-split dispersion of thermal radiation. Phys. Rev. Lett. 105, 136402–4 (2010)Google Scholar
  82. 82.
    K. Frischwasser, I. Yulevich, V. Kleiner, E. Hasman, Rashba-like spin degeneracy breaking in coupled thermal antenna lattices. Opt. Express 19, 23475–23482 (2011)Google Scholar
  83. 83.
    K.D. Ko, C.K. Toussaint Jr, A simple GUI for modeling the optical properties of single metal nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 110, 1037–1043 (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Micro and Nanooptics Laboratory, Faculty of Mechanical Engineering, and Russell Berrie Nanotechnology InstituteTechnion-Israel Institute of Technology HaifaIsrael

Personalised recommendations