Advertisement

Plasmonic Functionalities Based on Detuned Electrical Dipoles

  • Anders PorsEmail author
  • Michael G. Nielsen
  • Sergey I. Bozhevolnyi
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 15)

Abstract

We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells with two and three differently sized gold nanorods, we show the possibility of optical transparency characterized by enhanced transmission, reduced group velocity and propagation loss. The concept of DED is further applied to plasmonic sensing of the environment, demonstrating unprecedented sensitivity to refractive index changes by the utilization of scattering asymmetry. By the similar concept, DED metamaterials are designed to function as nanometer-thin wave plates in reflection.

Keywords

Diffraction Efficiency Effective Refractive Index Electromagnetically Induce Transparency Fano Resonance Magnetic Dipole Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)CrossRefGoogle Scholar
  2. 2.
    N. Papasimakis, V.A. Fedotov, N.I. Zheludev, S.L. Prosvirnin, Phys. Rev. Lett. 101, 253903 (2008)CrossRefGoogle Scholar
  3. 3.
    P. Tassin, L. Zhang, T. Koschny, E.N. Economou, C.M. Soukoulis, Phys. Rev. Lett. 102, 053901 (2009)CrossRefGoogle Scholar
  4. 4.
    P. Tassin, L. Zhang, T. Koschny, E.N. Economou, C.M. Soukoulis, Opt. Express 17, 5595 (2009)CrossRefGoogle Scholar
  5. 5.
    N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009)CrossRefGoogle Scholar
  6. 6.
    R. Taubert, M. Hentschel, J. Kästel, H. Giessen, Nano Lett. 12, 1367 (2012)CrossRefGoogle Scholar
  7. 7.
    K.J. Boller, A. Imamolu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)CrossRefGoogle Scholar
  8. 8.
    M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)CrossRefGoogle Scholar
  9. 9.
    T.F. Krauss, Nat. Photonics 2, 448 (2008)CrossRefGoogle Scholar
  10. 10.
    N. Papasimakis, Y.H. Fu, V.A. Fedotov, S.L. Prosvirnin, D.P. Tsai, N.I. Zheludev, Appl. Phys. Lett. 94, 211902 (2009)CrossRefGoogle Scholar
  11. 11.
    S. Maier, Nat. Mater. 8, 699 (2009)CrossRefGoogle Scholar
  12. 12.
    R.D. Kekatpure, E.S. Barnard, W. Cai, M.L. Brongersma, Phys. Rev. Lett. 104, 243902 (2010)CrossRefGoogle Scholar
  13. 13.
    S.I. Bozhevolnyi, A.B. Evlyukhin, A. Pors, M.G. Nielsen, M. Willatzen, O. Albrektsen, New J. Phys. 13, 023034 (2011)CrossRefGoogle Scholar
  14. 14.
    A.B. Evlyukhin, S.I. Bozhevolnyi, A. Pors, M.G. Nielsen, I.P. Radko, M. Willatzen, O. Albrektsen, Nano Lett. 10, 4571 (2010)CrossRefGoogle Scholar
  15. 15.
    A. Pors, M.G. Nielsen, G.D. Valle, M. Willatzen, O. Albrektsen, S.I. Bozhevolnyi, Opt. Lett. 36, 1626 (2011)CrossRefGoogle Scholar
  16. 16.
    E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)CrossRefGoogle Scholar
  17. 17.
    C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002)CrossRefGoogle Scholar
  18. 18.
    L. Jylhä, I. Kolmakov, S. Maslovski, S. Tretyakov, J. Appl. Phys. 99, 043102 (2006)CrossRefGoogle Scholar
  19. 19.
    F. Wang, Y.R. Shen, Phys. Rev. Lett. 97, 206806 (2006)CrossRefGoogle Scholar
  20. 20.
    G.D. Valle, T. Søndergaard, S.I. Bozhevolnyi, Phys. Rev. B 80, 235405 (2009)CrossRefGoogle Scholar
  21. 21.
    A. Pors, M. Willatzen, O. Albrektsen, S.I. Bozhevolnyi, J. Opt. Soc. Am. B 27, 1680 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989)Google Scholar
  23. 23.
    J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)Google Scholar
  24. 24.
    A. Pors, M. Willatzen, O. Albrektsen, S.I. Bozhevolnyi, Phys. Rev. B 83, 245409 (2011)CrossRefGoogle Scholar
  25. 25.
    P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)CrossRefGoogle Scholar
  26. 26.
    L. Novotny, Phys. Rev. Lett. 98, 266802 (2007)CrossRefGoogle Scholar
  27. 27.
    G.D. Valle, T. Søndergaard, S.I. Bozhevolnyi, Opt. Express 16, 6867 (2008)CrossRefGoogle Scholar
  28. 28.
    J. Jung, T. Søndergaard, S.I. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007)CrossRefGoogle Scholar
  29. 29.
    A. Pors, M. Willatzen, O. Albrektsen, S.I. Bozhevolnyi, J. Comput. Theor. Nanosci. 8, 1619 (2011)CrossRefGoogle Scholar
  30. 30.
    E. Plum, X.X. Liu, V.A. Fedotov, Y. Chen, D.P. Tsai, N.I. Zheludev, Phys. Rev. Lett. 102, 113902 (2009)CrossRefGoogle Scholar
  31. 31.
    E. Plum, V.A. Fedotov, N.I. Zheludev, J. Opt. A: Pure Appl. Opt. 11, 074009 (2009)CrossRefGoogle Scholar
  32. 32.
    A. Alù, Y. Zhao, X.X. Liu, in URSI Proceedings (2011)Google Scholar
  33. 33.
    D.R. Smith, S. Schultz, P. Markos̆, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)Google Scholar
  34. 34.
    M.G. Nielsen, A. Pors, O. Albrektsen, M. Willatzen, S.I. Bozhevolnyi, J. Opt. 13, 055106 (2011)CrossRefGoogle Scholar
  35. 35.
    N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nano Lett. 10, 2342 (2010)CrossRefGoogle Scholar
  36. 36.
    S. Zhang, W. Fan, K.J. Malloy, S.R.J. Brueck, J. Opt. Soc. Am. B 23, 434 (2006)CrossRefGoogle Scholar
  37. 37.
    J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P.V. Duyne, Nat. Mater. 7, 442 (2008)CrossRefGoogle Scholar
  38. 38.
    L.J. Sherry, S.H. Chang, G.C. Schatz, R.P.V. Duyne, Nano Lett. 5, 2034 (2005)CrossRefGoogle Scholar
  39. 39.
    L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P.V. Duyne, Nano Lett. 5, 2060 (2006)CrossRefGoogle Scholar
  40. 40.
    V.G. Kravets, F. Schedin, A.N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008)CrossRefGoogle Scholar
  41. 41.
    J.M. McMahon, J. Henzie, T.W. Odom, G.C. Schatz, S.K. Gray, Opt. Express 15, 18119 (2007)CrossRefGoogle Scholar
  42. 42.
    J. Henzie, M.H. Lee, T.W. Odom, Nat. Nanotechnol. 2, 549 (2007)CrossRefGoogle Scholar
  43. 43.
    B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2007)CrossRefGoogle Scholar
  44. 44.
    J.B. Lassiter, H. Sobhani, J.A. Fan, J. Kundu, F. Capasso, P. Nordlander, N.J. Halas, Nano Lett. 10, 3184 (2010)CrossRefGoogle Scholar
  45. 45.
    N. Verellen, P.V. Dorpe, C. Huang, K. Lodewijks, G.A.E. Vandenbosch, L. Lagae, V.V. Moshchalkov, Nano Lett. 11, 391 (2011)CrossRefGoogle Scholar
  46. 46.
    C. Wu, A.B. Khanikaev, R. Adato, N. Arju, A.A. Yanik, H. Altug, G. Shvets, Nat. Mater. 11, 69 (2012)CrossRefGoogle Scholar
  47. 47.
    T. Pakizeh, M. Käll, Nano Lett. 9, 2343 (2009)CrossRefGoogle Scholar
  48. 48.
    T. Shegai, S. Chen, V.D. Miljković, G. Zengin, P. Johansson, M. Käll, Nat. Commun. 2, 481 (2011)CrossRefGoogle Scholar
  49. 49.
    I.P. Radko, A.B. Evlyukhin, A. Boltasseva, S.I. Bozhevolnyi, Opt. Express 16, 3924 (2008)CrossRefGoogle Scholar
  50. 50.
    F. Xu, R.C. Tyan, P.C. Sun, Y. Fainman, Opt. Lett. 20, 2457 (1995)CrossRefGoogle Scholar
  51. 51.
    G.P. Nordin, P.C. Deguzman, Opt. Express 5, 163 (1999)CrossRefGoogle Scholar
  52. 52.
    W. Yu, A. Mizutani, H. Kikuta, T. Konishi, Appl. Opt. 45, 2601 (2006)CrossRefGoogle Scholar
  53. 53.
    S.H. Yang, M.L. Cooper, P.R. Bandaru, S. Mookherjea, Opt. Express 16, 8306 (2008)CrossRefGoogle Scholar
  54. 54.
    L.H. Cescato, E. Gluch, N. Streibl, Appl. Opt. 29, 3286 (1990)CrossRefGoogle Scholar
  55. 55.
    S.Y. Hsu, K.L. Lee, E.H. Lin, M.C. Lee, P.K. Wei, Appl. Phys. Lett. 95, 013105 (2009)CrossRefGoogle Scholar
  56. 56.
    A. Drezet, C. Genet, T.W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008)CrossRefGoogle Scholar
  57. 57.
    G.F. Brand, Am. J. Phys. 71, 452 (2003)CrossRefGoogle Scholar
  58. 58.
    W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009)Google Scholar
  59. 59.
    S.K.N. Liu, H. Giessen, Adv. Mater. 20, 4521 (2008)CrossRefGoogle Scholar
  60. 60.
    F.I. Baida, M. Boutria, R. Oussaid, D.V. Labeke, Phys. Rev. B 84, 035107 (2011)CrossRefGoogle Scholar
  61. 61.
    E.H. Khoo, E.P. Li, K.B. Crozier, Opt. Lett. 36, 2498 (2011)CrossRefGoogle Scholar
  62. 62.
    Y. Zhao, A. Alù, Phys. Rev. B 84, 205428 (2011)CrossRefGoogle Scholar
  63. 63.
    A. Roberts, L. Lin, Opt. Lett. 37, 1820 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Anders Pors
    • 1
    Email author
  • Michael G. Nielsen
    • 2
  • Sergey I. Bozhevolnyi
    • 2
  1. 1.Mads Clausen Institute (MCI)University of Southern DenmarkSønderborgDenmark
  2. 2.Institute of Technology and Innovation (ITI)University of Southern DenmarkOdense MDenmark

Personalised recommendations