Waves on Subwalength Metallic Surfaces: A Microscopic View Point

  • Philippe LalanneEmail author
  • Haitao Liu
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 15)


At a microscopic level, the electromagnetic properties of subwavelength metallic surfaces are due to two kinds of elementary distinct waves, the surface plasmon polaritons and the quasi-cylindrical waves. These waves are launched on the metal surface by the scattering of the incident field on the subwavelength indentations, and are subsequently scattered by adjacent indentations to ultimately form a complex surface charge pattern that is responsible of various fascinating phenomena. We review the fundamental properties that govern these waves and discuss their impacts in the Wood anomaly of metallic gratings, a phenomenon historically attributed to surface plasmon polaritons since the milestone work by U. Fano [10].


Wood anomalies Surface plasmon Extraordinary optical transmission Theory of metallic grating Quasi-cylindrical wave Norton wave Microscopic model Plasmonic surfaces 



Haitao Liu acknowledges financial supports from the National Natural Science Foundation of China (No. 10804057), from the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 708021), from the 973 Project (No. 2007CB307001), and from the Natural Science Foundation of Tianjin (No. 11JCZDJC15400). Jean Claude Rodier, Lionel Aigouy, Xiaoyan Yang, Jacques Giérak, Eric Bourhis, Christophe Sauvan, Stéphane Collin, Lionel Jacobowiez and Jean Paul Hugonin are acknowledged for fruitful discussions.


  1. 1.
    L. Aigouy, P. Lalanne, J.P. Hugonin, G. Julie, V. Mathet, M. Mortier, Near-field analysis of surface waves launched at nanoslit apertures. Phys. Rev. Lett. 98, 153902 (2007)CrossRefGoogle Scholar
  2. 2.
    A. Banos, Dipole Radiation in the Presence of a Conducting Half-Space (Pergamon Press, Oxford, 1966)Google Scholar
  3. 3.
    W.L. Barnes, Topical review: fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998)CrossRefGoogle Scholar
  4. 4.
    F. van Beijnum, C. Rétif, C.B. Smiet, H.T. Liu, P. Lalanne, M.P. van Exter, Quasi-Cylindrical Wave Contribution in Experiments on Extraordinary Optical Transmission, Nature. 492, 411–414 (2012)Google Scholar
  5. 5.
    L. Chen, J.T. Robinson, M. Lipson, Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface. Opt. Express 14, 12629 (2006)CrossRefGoogle Scholar
  6. 6.
    R.E. Collin, Hertzian dipole radiating over a lossy earth or sea: some early and late 20th century controversies. IEEE Antennas Prop. Mag. 46, 64 (2004)CrossRefGoogle Scholar
  7. 7.
    W. Dai, C. Soukoulis, Theoretical analysis of the surface wave along a metal-dielectric interface. Phys. Rev. B 80, 155407 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Ditlbacher, J.R. Krenn, G. Schider, A. Leitner, F.R. Aussenegg, Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764 (2002)CrossRefGoogle Scholar
  9. 9.
    T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through subwavelength hole arrays. Nature 391, 667–669 (1998)CrossRefGoogle Scholar
  10. 10.
    U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)CrossRefGoogle Scholar
  11. 11.
    G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H.J. Lezec, The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nat. Phys. 2, 262–267 (2006)Google Scholar
  12. 12.
    X. Huang, M.L. Brongersma, Rapid computation of light scattering from aperiodic plasmonic structures. Phys. Rev. B 84, 245120 (2011)CrossRefGoogle Scholar
  13. 13.
    P. Lalanne, J.P. Hugonin, Interaction between optical nano-objects at metallo-dielectric interfaces. Nat. Phys. 2, 551–556 (2006)CrossRefGoogle Scholar
  14. 14.
    P. Lalanne, J.P. Hugonin, H.T. Liu, B. Wang, A microscopic view of the electromagnetic properties of sub-\(\lambda \) metallic surfaces. Surf. Sci. Rep. 64, 453–469 (2009)CrossRefGoogle Scholar
  15. 15.
    G.Y. Li, F. Xiao, L. Cai, K. Alameh, A.S. Xu, Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition. New J. Phys. 13, 073045 (2011)CrossRefGoogle Scholar
  16. 16.
    H.T. Liu, P. Lalanne, Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008)CrossRefGoogle Scholar
  17. 17.
    H.T. Liu, P. Lalanne, Light scattering by metallic surfaces with subwavelength patterns. Phys. Rev. B 82, 115418 (2010)CrossRefGoogle Scholar
  18. 18.
    L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001)CrossRefGoogle Scholar
  19. 19.
    A.Y. Nikitin, S.G. Rodrigo, F.J. Garcìa-Vidal, L. Martìn-Moreno, In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region. New J. Phys. 11, 123020 (2009)CrossRefGoogle Scholar
  20. 20.
    A.Y. Nikitin, F.J. Garcìa-Vidal, L. Martìn-Moreno, Surface electromagnetic field radiated by a subwavelength hole in a metal film. Phys. Rev. Lett. 105, 073902 (2010)CrossRefGoogle Scholar
  21. 21.
    K.A. Norton, Propagation of radio waves over a plane earth. Nature 135, 954 (1935)CrossRefGoogle Scholar
  22. 22.
    K.A. Norton, The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proc. IRE 24, 1367–1387 (1936)Google Scholar
  23. 23.
    K.A. Norton, The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proc. IRE 25, 1203–1236 (1937)Google Scholar
  24. 24.
    E.D. Palik (ed.), in Handbook of Optical Constants of Solids, Part II(1) (Academic Press, New York, 1985)Google Scholar
  25. 25.
    H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988)Google Scholar
  26. 26.
    L. Rayleigh, On the Dynamical Theory of Gratings. Proc. R. Soc. (London) A. 79, 399–416 (1907)Google Scholar
  27. 27.
    R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)CrossRefGoogle Scholar
  28. 28.
    M. Righini, A.S. Zelenina, C. Girard, R. Quidant, Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys. 3, 477–480 (2007)CrossRefGoogle Scholar
  29. 29.
    A. Sommerfeld, The broadening of the waves and the wireless telegraph. Ann. der Physik 28, 665–736 (1909)CrossRefGoogle Scholar
  30. 30.
    A. Sommerfeld, The propagation of waves in wireless telegraphy. Ann. der Physik 81, 1135–1153 (1926)CrossRefGoogle Scholar
  31. 31.
    M. Specht, J.D. Pedarning, W.M. Heckl, T.W. Hänsch, Scanning plasmon near-field microscope. Phys. Rev. Lett. 68, 476–479 (1992)CrossRefGoogle Scholar
  32. 32.
    J. Strong, Effect of evaporated films on energy distribution in grating spectra. Phys. Rev. 49, 291–296 (1936)CrossRefGoogle Scholar
  33. 33.
    B. Ung, Y.L. Sheng, Optical surface waves over metallo-dielectric nanostructures. Opt. Express 16, 9073–9086 (2008)CrossRefGoogle Scholar
  34. 34.
    C. Vassallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991)Google Scholar
  35. 35.
    R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag. 4, 396–402 (1902)CrossRefGoogle Scholar
  36. 36.
    X.Y. Yang, H.T. Liu, P. Lalanne, Cross conversion between surface plasmon polaritons and quasicylindrical waves. Phys. Rev. Lett. 102, 153903 (2009)CrossRefGoogle Scholar
  37. 37.
    I. Zenneck, Propagation of plane electromagnetic waves along a plane conducting surface and its bearing on the theory of transmission in wireless telegraphy. Ann. Phys. 23, 846 (1907).
  38. 38.
    N.I. Zheludev, S.L. Prosvirnin, N. Papasimakis, V.A. Fedotov, Lasing spaser. Nat. Photon. 2, 351 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratoire Photonique, Numérique et NanosciencesInstitut d’Optique d’Aquitaine, Allée Laroumagne, Univ Bordeaux 1 , CNRSTalenceFrance
  2. 2.Key Laboratory of Optical Information Science and Technology, Ministry of Education, Institute of Modern OpticsNankai UniversityTianjinChina

Personalised recommendations