Advertisement

Media and Conditions for the Growth of Halophilic and Halotolerant Bacteria and Archaea

  • Mark A. SchneegurtEmail author

Abstract

An awareness of haloarchaea has existed since ancient times, with published descriptions of “red waters” associated with salt mining, the “red heat” of salted hides, and the “reddening” of salted fish (Bass-Becking 1931; Kurlansky 2002). For a society without refrigeration, the economic impact of codfish deterioration garnered particular attention, with Farlow (1878) oft cited as the first to publish on what were presumably haloarchaea . The early growth media of Eddington (1887) and Le Dantec (1891) reflected natural high-protein substrates, using beef peptone, gelatins, and fish broths, solidified with agar, flour, or bread paste. While some early studies used pieces of fish soaked in various brines (Høye 1908; Klebahn 1919; Harrison and Kennedy 1922), many included ground cod or a cod broth, or media based on beef bouillon or beef gelatin (Beckwith 1911; Bitting 1911; Becker 1912; Kellerman 1915; Clayton and Gibbs 1927; Velu 1929). Milk was introduced as a preferred organic constituent by Bitting (1911) and Kellerman (1915), but was popularized by Lockhead (1934). Rice flour, wheat flour or whole rice grains often were used as gelling agents (Clayton and Gibbs 1927; Robertson 1931; Boury 1934; Gibbons 1937). Silica gel was suggested to reduce organic content of solidified media (Hanks and Weintraub 1936; Moore 1940 1941). It was recognized that alkaline culture conditions were useful for growing certain halophilic microbes (Stather and Liebscher 1929) and that halophilic obligate anaerobes could be grown on a cooked meat medium (Baumgartner 1937). The seminal paper of Harrison and Kennedy (1922) focused on the difficulties of growing the organisms responsible for red discolorations on salted fish, trying many media recipes including those based on cider, milk, broths, sugars, and potatoes. While the red organisms proved difficult to isolate, as an aside, the paper discusses a broad diversity of non-red halophilic organisms that were more easily isolated on these media.

References

  1. Abram D, Gibbons NE (1960) Turbidity of suspensions and morphology of red halophilic bacteria as influenced by sodium chloride concentration. Can J Microbiol 6:535–543PubMedGoogle Scholar
  2. Abram D, Gibbons NE (1961) The effect of chlorides of monovalent cations, urea, detergents, and heat on morphology and the turbidity of suspensions of red halophilic bacteria. Can J Microbiol 7:741–750PubMedGoogle Scholar
  3. Adams R, Bygraves J, Kogut M, Russell NJ (1987) The role of osmotic effects in haloadaptation of Vibrio costicola. J Gen Microbiol 133:1861–1870PubMedGoogle Scholar
  4. Al-Mailem DM, Sorkhoh NA, Al-Awadhi H, Eliyas M, Radwan SS (2010) Biodegradation of crude oil and pure hydrocarbons by extreme halophilic archaea from hypersaline coasts of the Arabian Gulf. Extremophiles 14:321–328PubMedGoogle Scholar
  5. Anderson GC (1958) Some limnological features of a shallow saline meromictic lake. Limnol Oceanogr 3:259–270Google Scholar
  6. Baas-Becking LGM (1931) Historical notes on salt and salt-manufacture. Sci Monthly 32:434–446Google Scholar
  7. Baumgartner JG (1937) The salt limits and thermal stability of a new species of anaerobic halophile. Food Res 2:321–329Google Scholar
  8. Becker H (1912) Die Salzflecken. Collegium 1912:408–418Google Scholar
  9. Beckwith TD (1911) The bacteriological cause of the reddening of cod and other allied fishes. Zentr Bakteriol Parasitenk Orig, Abt I 60:351–354Google Scholar
  10. Ben-Amotz A, Avron M (1983) On the factors which determine massive carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597PubMedPubMedCentralGoogle Scholar
  11. Bertrand JC, Almallah M, Acquaviva M, Mille G (1990) Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Lett Appl Microbiol 11:260–263Google Scholar
  12. Bertullo VH (1960–1961) La saponina como agente selectivo en la diferenciación de las bacteria rojas halofílicas. An Fac Vet Uruguay (Montevideo) 10:19–22Google Scholar
  13. Bitting AW (1911) Preparation of the cod and other salt fish for the market, including a bacteriological study of the causes of reddening. US Dept Agric Bur Chem Bull 133:63Google Scholar
  14. Blum JS, Bindi AB, Buzzelli J, Stolz JF, Oremland RS (1998) Bacillus arsenicoselenatis, sp. nov., and Bacillus selenitireducens, sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30Google Scholar
  15. Boring J, Kushner DJ, Gibbons NE (1963) Specificity of the salt requirement of Halobacteriumcutirubrum. Can J Microbiol 2:143–154Google Scholar
  16. Boury M (1934) Études sur le salage du poisson. Rev Trav Off Pêches Marit 7:195–222Google Scholar
  17. Brown AD (1963) The peripheral structures of Gram-negative bacteria. IV. The cation-sensitive dissolution of the cell membrane of the halophilic bacterium, Halobacterium halobium. Biochim Biophys Acta 75:425–435PubMedGoogle Scholar
  18. Brown HJ, Gibbons NE (1955) The effect of magnesium, potassium, and iron on the growth and morphology of red halophilic bacteria. Can J Microbiol 1:486–494PubMedGoogle Scholar
  19. Butinar L, Santos S, Spencer-Martins I, Oren A, Gunde-Cimerman N (2005) Yeast diversity in hypersaline habitats. FEMS Microbiol Lett 244:229–234PubMedGoogle Scholar
  20. Cantrell SA, Casillas-Martínez L, Molina M (2006) Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycolog Res 110:962–970Google Scholar
  21. Caton TM, Witte LR, Ngyuen HD, Buchheim JA, Buchheim MA, Schneegurt MA (2004) Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol 48:449–462PubMedGoogle Scholar
  22. Caton TM, Caton IR, Witte LR, Schneegurt MA (2009) Archaeal diversity at the Great Salt Plains of Oklahoma described by cultivation and molecular analyses. Microb Ecol 58:519–528PubMedPubMedCentralGoogle Scholar
  23. Cayol J-L, Ollivier B, Patel BKC, Prensier G, Guezennec J, Garcia J-L (1994) Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int J Syst Bacteriol 44:534–540PubMedGoogle Scholar
  24. Cayol J-L, Ducerf S, Patel BKC, Garcia J-L, Thomas P, Ollivier B (2000) Thermohalobacter berrensis gen. nov., sp. nov., a thermophilic, strictly halophilic bacterium from a solar saltern. Int J Syst Evol Microbiol 50:559–564PubMedGoogle Scholar
  25. Chan K, Leung OC (1979) Nutrition and growth of the moderately halophilic bacteria Micrococcus morrhuae K-17 and Micrococcus luteus K-15. Microbios 25:71–84PubMedGoogle Scholar
  26. Clayton W, Gibbs WE (1927) Examination for halophilic micro-organisms. Analyst 52:395–397Google Scholar
  27. Crisler JD, Kilmer BR, Rowe K, Cunderla B, Madu BE, Schneegurt MA (2010) Isolation and characterization of microbes from Basque Lake, BC, and Hot Lake, WA, environments with high magnesium sulfate concentrations. Trans KS Acad Sci 113:122–123 [abstr]Google Scholar
  28. Crisler JD, Newville TM, Chen F, Clark BC, Schneegurt MA (2012) Bacterial growth at the high concentrations of magnesium sulfate found in Martian soils. Astrobiology 12:98–106PubMedPubMedCentralGoogle Scholar
  29. Dor I, Hornoff M (1985) Salinity-temperature relations and morphotypes of a mixed population of coccoid cyanobacteria from a hot, hypersaline pond in Israel. Mar Ecol 6:13–25Google Scholar
  30. Ducharme L, Matheson AT, Yaguchi M, Visentin LP (1972) Utilization of amino acids by Halobacterium cutirubrum in chemically defined medium. Can J Microbiol 18:1349–1351PubMedGoogle Scholar
  31. Dundas ID, Larsen H (1962) The physiological role of the carotenoid pigments of Halobacterium salinarium. Arch Mikrobiol 44:233–239Google Scholar
  32. Dundas ID, Srinivasan VR, Halvorson HO (1963) A chemically defined medium for Halobacterium salinarium strain 1. Can J Microbiol 9:619–624Google Scholar
  33. Dussault HP (1956) Study of red halophilic bacteria in solar salt and salted fish. I. Effect of Bacto-oxgall. J Fish Res Bd 13:183–194Google Scholar
  34. Dussault HP, LaChance RA (1952) Improved medium for red halophilic bacteria from salt fish. J Fish Res Bd Can 9:157–163Google Scholar
  35. Eddington A (1887) An investigation into the nature of the organisms present in “red” cod, and as to the cause of the red colouration. Appl Fish Bd Scot Ann Rpt 6:207–214Google Scholar
  36. Eimhjellen K (1965) Isolation of extremely halophilic bacteria. Zentr Bakteriol Parasit Infek Hyg 1. Abt Orig 1:126–137Google Scholar
  37. Esteban GF, Finlay BJ (2003) Cryptic ciliates in a hypersaline lagoon. Protist 154:411–418PubMedGoogle Scholar
  38. Farlow WG (1878) On the nature of the peculiar reddening of salted codfish during the summer season (1878). U.S. Fish Comm., Report of the Commissioner for 1878, pp 969–973Google Scholar
  39. Flannery WL (1955) Synthetic media for two nonpigmented obligate halophilic bacteria. Bacteriol Proc 55:26Google Scholar
  40. Flannery WL (1956) Current status of knowledge of halophilic bacteria. Bacteriol Rev 20:49–66PubMedPubMedCentralGoogle Scholar
  41. Flannery WL, Kennedy DM (1962) The nutrition of Vibriocosticolus. I. A simplified synthetic medium. Can J Microbiol 8:923–928Google Scholar
  42. Flannery WL, Doetsch RN, Hansen PA (1952) Salt desideratum of Vibrio costicolus, an obligate halophilic bacterium. I. Ionic replacement of sodium chloride requirement. J Bacteriol 64:713–717PubMedPubMedCentralGoogle Scholar
  43. Foster IS, King PL, Hyde BC, Southam G (2010) Characterization of halophiles in natural MgSO4 salts and laboratory enrichment samples: Astrobiological implications for Mars. Planet Space Sci 58:599–615Google Scholar
  44. Forsyth MP, Kushner DJ (1970) Nutrition and distribution of salt response in populations of moderately halophilic bacteria. Can J Microbiol 16:253–261PubMedGoogle Scholar
  45. Franzmann PD, Burton HR, McMeekin TA (1987) Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int J Syst Bacteriol 37:27–34Google Scholar
  46. Franzmann PD, Stackebrandt E, Sanderson K, Volkman JK, Cameron DE, Stevenson PL, McMeekin TA, Burton HR (1988) Halobacterium lacusprofundi sp. nov., a halophilic bacterium isolated from Deep Lake, Antarctica. Syst Appl Microbiol 11:20–27Google Scholar
  47. Garcia-Pichel F, Prufert-Bebout L, Muyzer G (1996) Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl Environ Microbiol 62:3284–3291PubMedPubMedCentralGoogle Scholar
  48. Garcia-Pichel F, Nübel U, Muyzer G (1998) The phylogeny of unicellular, extremely halotolerant cyanobacteria. Arch Microbiol 169:469–482PubMedGoogle Scholar
  49. Gibbons NE (1937) Studies on salt fish. 1. Bacteria associated with the reddening of salt fish. J Biol Bd Can 3:70–76Google Scholar
  50. Gibbons NE (1969) Isolation, growth and requirements of halophilic bacteria. In: Norris JR, Ribbons DW (eds), Methods in microbiology, vol 3B. Academic Press, New York, pp 169–183Google Scholar
  51. Gochnauer MB, Kushner DJ (1969) Growth and nutrition of extremely halophilic bacteria. Can J Microbiol 15:1157–1165PubMedGoogle Scholar
  52. Goh F, Barrow KD, Burns BP, Neilan BA (2010) Identification and regulation of novel compatible solutes from hypersaline stromatolite-associated cyanobacteria. Arch Microbiol 192:1031–1038PubMedGoogle Scholar
  53. Golikowa SM (1930) Eine Gruppe von obligat halophilen Bakterien, gezüchtet in Substraten mit hohem NaCl-Gehalt. Zentr Bakteriol Parasitenk, Abt II 80:35–41Google Scholar
  54. Grant WD (2004) Life at low water activity. Phil Trans R Soc Lond B 359:1249–1267Google Scholar
  55. Grey VL, Fitt PS (1976) An improved synthetic growth medium for Halobacterium cutirubrum. Can J Microbiol 22:440–442PubMedGoogle Scholar
  56. Guffanti AA, Finkelthal O, Hicks DB, Falk L, Sidhu A, Garro A, Krulwich TA (1986) Isolation and characterization of new facultatively alkalophilic strains of Bacillus species. J Bacteriol 167:766–773PubMedGoogle Scholar
  57. Guillard RR, Ryther JH (1962) Studies on marine plankton diatoms. 1. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239PubMedGoogle Scholar
  58. Gunde-Cimerman N, Ramos J, Plemenitaš A (2009) Halotolerant and halophilic fungi. Mycol Res 113:1231–1241PubMedPubMedCentralGoogle Scholar
  59. Hallsworth JE, Yakimov MM, Golyshin PN, Gillion JLM, D’Auria G, de Lima Alves F, La Cono V, Genovese M, McKew BA, Hayes SL, Harris G, Giuliano L, Timmis KN, McGenity TJ (2007) Limits of life in MgCl2-containing environments: chaotropicity defines the window. Environ Microbiol 9:801–813PubMedGoogle Scholar
  60. Hammer UT (1986) Saline Lake ecosystems of the world. Junk, DordrechtGoogle Scholar
  61. Handy FM (1916) An investigation of the mineral deposits of northern Okanogan County. Bulletin 100, State College of Washington, PullmanGoogle Scholar
  62. Hanks J, Weintraub R (1936) The preparation of silicic acid jellies for bacteriological media. J Bacteriol 32:639–652PubMedPubMedCentralGoogle Scholar
  63. Harrison FC, Kennedy ME (1922) XVI. The discoloration of cured codfish. Trans R Soc Can Sect V:101–152Google Scholar
  64. Henley WJ, Major KM, Hironaka JL (2002) Response to salinity and heat stress in two halotolerant chlorophyte algae. J Phycol 38:757–766Google Scholar
  65. Hartmann R, Sickinger H-D, Oesterhelt D (1980) Anaerobic growth of halobacteria. Proc Natl Acad Sci USA 77:3821–3825PubMedGoogle Scholar
  66. Hess E (1942) Studies on salt fish VII. Red halophilic bacteria in seawater and fish slime and intestines. J Fish Res Bd Can 5:438–439Google Scholar
  67. Hochstein LI (1988) The physiology and metabolism of the extremely halophilic bacteria. In: Rodriguez-Valera F (ed), Halophilic bacteria, vol. 2. CRC Press, Boca Raton, FL, pp 67–84Google Scholar
  68. Hof T (1935) Investigations concerning bacterial life in strong brines. Rec Trav Bot Neerl 32:92–173Google Scholar
  69. Horowitz-Wlassowa LM (1931) Über die Rotfärbung gesalzener Därme (“der rote Hund”). Zentr Bakteriol Parasitenk, Abt II 85:12–18Google Scholar
  70. Høye K (1908) Untersuchungen über die Schimmelbildung des Bergfisches. Bergens Mus Aarbog 4:29Google Scholar
  71. Ingram M (1957) Micro-organisms resisting high concentrations of sugars or salt. Symp Soc Gen Microbiol 7:90–133Google Scholar
  72. Ishida Y (1970) Growth behavior of halobacteria in relation to concentration of NaCl and temperature of environments. Bull Jp Soc Sci Fish 36:397–401Google Scholar
  73. Ishida Y, Fujii T (1970) Isolation of halophilic and halotolerant bacteria from solar salt. Bull Jp Soc Sci Fish 36:391–396Google Scholar
  74. Javor BJ (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28:153–159Google Scholar
  75. Javor BJ (1984) Growth potential of halophilic bacteria isolated from solar salt environments: carbon sources and salt requirements. Appl Environ Microbiol 48:352–360PubMedPubMedCentralGoogle Scholar
  76. Javor B, Requadt C, Stoeckenius W (1982) Box-shaped halophilic bacteria. J Bacteriol 151:1532–1542PubMedPubMedCentralGoogle Scholar
  77. Juez G (1988) Taxonomy of extremely halophilic archaebacteria. In: Rodriguez-Valera F (ed), Halophilic Bacteria, vol. 2, CRC Press, Boca Raton, FL, pp 3–24Google Scholar
  78. Kamekura M, Onishi H (1982) Cell-associated cations of the moderate halophile Micrococcus variansi ssp. halophilus grown in media of high concentrations of LiCl, NaCl, KCl, RbCl, or CsCl. Can J Microbiol 28:155–161Google Scholar
  79. Kamekura M, Dyall-Smith ML (1995) Taxonomy of the family Halobacteriaceae and the description of two new genera Halorubrubacterium and Natrialba. J Gen Appl Microbiol 41:333–350Google Scholar
  80. Kamekura M, Wallace R, Hipkiss AR, Kushner DJ (1985) Growth of Vibrio costicola and other moderate halophiles in a chemically defined minimal medium. Can J Microbiol 31:870–872PubMedGoogle Scholar
  81. Kamekura M, Oesterhelt D, Wallace R, Anderson P, Kushner DJ (1988) Lysis of halobacteria in Bacto-Peptone by bile acids. Appl Environ Microbiol 54:990–995PubMedPubMedCentralGoogle Scholar
  82. Kanai H, Kobayashi T, Aono R, Kudo T (1995) Natronococcus amylolyticus sp. nov., a haloalkaliphilic archaeon. Int J Syst Bacteriol 45:762–766Google Scholar
  83. Katznelson H, White AH (1950) Nutritional requirements of Pseudomonas nigrifaciens as related to growth and pigment production. Can J Res Sec C 28:706–715Google Scholar
  84. Katznelson H, Lockhead AG (1952) Growth factor requirements of halophilic bacteria. J Bacteriol 64:97–103PubMedPubMedCentralGoogle Scholar
  85. Kauri T, Wallace R, Kushner DJ (1990) Nutrition of the halophilic archaebacterium, Haloferax volcanii. Syst Appl Microbiol 13:14–18Google Scholar
  86. Kellerman KF (1915) Micrococci causing red discoloration of salted codfish. Zentr Bakteriol Parasitenk, Abt II 42:398–402Google Scholar
  87. Kirkwood AE, Henley WJ (2006) Algal community structure and halotolerance as related to the extreme conditions of a terrestrial, hypersaline environment. J Phycol 42:537–547Google Scholar
  88. Klebahn H (1919) Die Schädlinge des Klippfisches. Ein Beitrag zur Kenntnis der salzliebenden Organismen. Mitt Inst Allg Bot Hamb 4:11–69Google Scholar
  89. Kobayashi T, Kanai H, Hayashi T, Akiba T, Akaboshi R, Horikoshi K (1992) Haloalkaliphilic maltotriose-forming α-amylase from the archaebacterium Natronococcus sp. strain Ah-36. J Bacteriol 174:3439–3444PubMedGoogle Scholar
  90. Kono M, Taniguchi S (1960) Hydroxylamine reductase of a halotolerant Micrococcus. Biochim Biophys Acta 43:419–430PubMedGoogle Scholar
  91. Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Microbiology 60:596–601Google Scholar
  92. Kurlansky M (2002) Salt: A world history. Walker Publishing Co., New YorkGoogle Scholar
  93. Kushner DJ (1968) Halophilic bacteria. Adv Appl Microbiol 10:73–99PubMedGoogle Scholar
  94. Kushner DJ (1978) Life in high salt and solute concentrations: halophilic bacteria. In: Kushner DJ (ed), Microbial life in extreme environments. Academic Press, London, pp 317–368Google Scholar
  95. Kushner DJ (1985) The halobacteriaceae. In: The bacteria, vol. 8. Academic Press, New York, pp 171–214Google Scholar
  96. Kushner DJ (1993) Growth and nutrition of halophilic bacteria. In: Vreeland RH, Hochstein L (eds), The biology of halophilic bacteria. CRC Press, Boca Raton, FL, pp 87–103Google Scholar
  97. Kushner DJ, Bayley ST (1963) The effect of pH on surface structure and morphology of the extreme halophile, Halobacterium cutirubrum. Can J Microbiol 9:53–63Google Scholar
  98. Kushner DJ, Kamekura M (1988) Physiology of halophilic eubacteria. In: Rodriguez-Valera F (ed), Halophilic bacteria, vol. 1. CRC Press, Boca Raton, FL, pp 109–138Google Scholar
  99. Kushwaha SC, Juez-Perez G, Rodriguez-Valera F, Kates M, Kushner DJ (1982) Survey of lipids of a new group of extremely halophilic bacteria from salt ponds in Spain. Can J Microbiol 28:1365–1372Google Scholar
  100. La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, Borghini M, Oliveri E, Mazzola S, L’Haridon S, Toffin L, Genovese L, Ferrer M, Giuliano L, Gloyshin PN, Yakimov MM (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings. Environ Microbiol 13:2250–2268PubMedGoogle Scholar
  101. Laiz L, Recio D, Hermosin B, Saiz-Jimenez C (2000) Microbial communities in salt efflorescences. In: Ciferri O, Tiano P, Mastromei G (eds), Of microbes and art: The role of microbial communities in the degradation and protection of cultural heritage. Kluwer, New York, pp 77–88Google Scholar
  102. Larsen H (1962) Halophilism. In: The bacteria, vol. 4. Academic Press, New York, pp 297–342Google Scholar
  103. Le Dantec A (1891) Étude de la morue rouge. Ann Inst Pasteur 5:656–667Google Scholar
  104. Litzner BR, Caton TM, Schneegurt MA (2006) Carbon substrate utilization, antibiotic sensitivity, and numerical taxonomy of bacterial isolates from the Great Salt Plains of Oklahoma. Arch Microbiol 185:286–296PubMedGoogle Scholar
  105. Lobyreva LB, Fel’dman RS, Plakunov VK (1987) Influence of aromatic amino acids on the growth of Halobacterium salinarium and the uptake of [14C]phenylalanine. Mikrobiologiya 56:16–20Google Scholar
  106. Lockhead AG (1934) Bacteriological studies on the red discoloration of salted hides. Can J Res 10:275–286Google Scholar
  107. Lortet ML (1892) Researches on the pathogenic microbes of the mud of the Dead Sea. Palest Explor Fund Quart State 1892:48–50Google Scholar
  108. MacLeod RA (1965) The question of the existence of specific marine bacteria. Bacteriol Rev 29:9–23PubMedPubMedCentralGoogle Scholar
  109. Madeley JR, Korngold RR, Kushner DJ, Gibbons NE (1967) The lysis of a psychrophilic marine bacterium as studied by microelectrophoresis. Can J Microbiol 13:45–55Google Scholar
  110. Mandrioli P, Saiz-Jimenez C (2002) Biodeterioration: Macromonitoring and microeffects on cultural heritage and the potential benefits of research to society. EC Advanced Study Course Technical Notes, Sessions 7–8, pp 1–5Google Scholar
  111. Markovitz A (1961) Method for the selection of bacteria that synthesize uronic acid-containing polysaccharides. J Bacteriol 82:436–441PubMedPubMedCentralGoogle Scholar
  112. Markovitz A, Sylvan S (1962) Effect of sodium sulfate and magnesium sulfate on heteropolysaccharide synthesis in gram-negative soil bacteria. J Bacteriol 83:483–489PubMedPubMedCentralGoogle Scholar
  113. Matheson AT, Sprott GD, McDonald IJ, Tessier H (1976) Some properties of an unidentified halophile: growth characteristics, internal salt concentration, and morphology. Can J Microbiol 22:780–786PubMedGoogle Scholar
  114. Mathrani IM, Boone DR (1985) Isolation and characterization of a moderately halophilic methanogen from a solar saltern. Appl Environ Microbiol 50:140–143PubMedPubMedCentralGoogle Scholar
  115. McLachlan J (1960) The culture of Dunaliellatertiolecta Butcher—a euryhaline organism. Can J Microbiol 6:367–379Google Scholar
  116. Mesbah NM, Hedrick DB, Peacock AD, Rohde M, Wiegel J (2007) Natranaerobius thermophilus gen. nov., sp. nov., a halophilic, alkalithermophilic bacterium from soda lakes of the Wadi An Natrun, Egypt, and proposal of Natranaerobiaceae fam. nov. and Natranaerobiales ord. nov. Int J Syst Evol Microbiol 57:2507–2512PubMedGoogle Scholar
  117. Mevarech M, Werczberger R (1985) Genetic transfer in Halobacterium volcanii. J Bacteriol 162:461–462PubMedPubMedCentralGoogle Scholar
  118. Minegishi H, Mizuki T, Echigo A, Fukushima T, Kamekura M, Usami R (2008) Acidophilic haloarchaeal strains are isolated from various solar salts. Saline Syst 4:16PubMedPubMedCentralGoogle Scholar
  119. Mohr V, Larsen H (1963) On the structural transformations and lysis of Halobacterium salinarium in hypotonic and isotonic solutions. J Gen Microbiol 31:267–280Google Scholar
  120. Montero CG, Ventosa A, Rodriguez-Valera F, Ruiz-Berraquero F (1988) Taxonomic study of non-alkaliphilic halococci. J Gen Microbiol 134:725–732Google Scholar
  121. Moore HN (1940) The use of silica gels for the cultivation of halophilic organisms. J Bacteriol 40:409–413PubMedPubMedCentralGoogle Scholar
  122. Moore HN (1941) The use of silica gels for the cultivation of halophilic organisms. II. Quantitative determination. J Bacteriol 41:317–321Google Scholar
  123. Mullakhanbhai MF, Larsen H (1975) Halobacteriumvolcanii spec. nov., a Dead Sea halobacterium with a moderate salt requirement. Arch Microbiol 104:207–214PubMedGoogle Scholar
  124. Niederberger TD, Perreault NN, Tille S, Lollar BS, Lacrampe-Couloume G, Anderson D, Greer CW, Pollard W, Whyte LG (2010) Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic. ISME J 4:1326–1339PubMedGoogle Scholar
  125. Nesbitt HW (2004) Groundwater evolution, authigenic carbonates and sulfates, of the Basque Lake No. 2 basin, Canada. In: Spencer RJ, Chou I-M (eds), Fluid-mineral interactions: A tribute to H.P. Eugster, special publication, vol. 2. Geochemical Society, 1990, pp 355–371Google Scholar
  126. Nicholson CA, Fathepure BZ (2004) Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol 70:1222–1225PubMedGoogle Scholar
  127. Nicholson CA, Fathepure BZ (2006) Aerobic biodegradation of benzene and toluene under hypersaline conditions at the Great Salt Plains, Oklahoma. FEMS Microbiol Lett 245:257–262Google Scholar
  128. Novitsky TJ, Kushner DJ (1975) Influence of temperature and salt concentration on the growth of a facultatively halophilic “Micrococcus” sp. Can J Microbiol 21:107–110PubMedGoogle Scholar
  129. Novitsky TJ, Kushner DJ (1976) Planococcus halophilus sp. nov., a facultatively halophilic coccus. Int J Syst Bacteriol 26:53–57Google Scholar
  130. Oesterhelt D and Krippahl G (1973) Light inhibition of respiration in Halobacterium halobium. FEBS Lett 36:72–76PubMedGoogle Scholar
  131. Oesterhelt D and Stoeckenius W (1974) Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane. Meth Enzymol 31A:667–678Google Scholar
  132. Oesterhelt D and Krippahl G (1983) Phototrophic growth of halobacteria and its use for isolation of photosynthetically-deficient mutants. Ann Microbiol 134B:137–150Google Scholar
  133. Ōmata S, Ueno T, Nakagawa Y (1961) On the color-producing bacteria in soy sause mash. Studies on halophilic bacteria I. Hakko Kogaku Zasshi 39:52–60Google Scholar
  134. Onishi H, McCance ME, Gibbons NE (1965) A synthetic medium for extremely halophilic bacteria. Can J Microbiol 11:365–373PubMedGoogle Scholar
  135. Onishi H, Fuchi H, Konomi K, Hidaka O, Kamekura M (1980) Isolation and distribution of a variety of halophilic bacteria and their classification by salt-response. Agric Biol Chem 44:1253–1258Google Scholar
  136. Oren A (1983a) Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch Microbiol 136:42–48Google Scholar
  137. Oren A (1983b) Halobacterium sodomense sp. nov., a Dead Sea halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol 33:381–386Google Scholar
  138. Oren A (1986) Intracellular salt concentrations of the anaerobic halophilic eubacteria Haloanaerobiumpraevalens and Halobacteroides halobius. Can J Microbiol 32:4–9Google Scholar
  139. Oren A (1990) Starch counteracts the inhibitory action of Bacto-Peptone and bile salts in media for the growth of halobacteria. Can J Microbiol 36:299–301Google Scholar
  140. Oren A (1991) Anaerobic growth of halophilic archaeobacteria by reduction of fumarate. J Gen Microbiol 137:1387–1390Google Scholar
  141. Oren A (1994) The ecology of the extremely halophilic archaea. FEMS Microbiol Rev 13:415–440Google Scholar
  142. Oren A (2000) Salts and brines. In: Whitton BA, Potts M (eds), The ecology of cyanobacteria. Their diversity in iome and space. Kluwer, Dordrecht, pp 281–306Google Scholar
  143. Oren A, Trüper HG (1990) Anaerobic growth of halophilic archaeobacteria by reduction of dimethylsulfoxide and trimethyamine N-oxide. FEMS Microbiol Lett 70:33–36Google Scholar
  144. Oren A, Weisburg WG, Kessel M, Woese CR (1984) Halobacteroides halobius gen. nov., sp. nov., a moderately halophilic anaerobic bacterium from the bottom sediments of the Dead Sea. Syst Appl Microbiol 5:58–70Google Scholar
  145. Paterek JR, Smith PH (1985) Isolation and characterization of a halophilic methanogen from Great Salt Lake. Appl Environ Microbiol 50:877–881PubMedPubMedCentralGoogle Scholar
  146. Payne JI, Sehgal SN, Gibbons NE (1960) Immersion refractometry of some halophilic bacteria. Can J Microbiol 6:9–15Google Scholar
  147. Petter HFM (1931) On bacteria of salted fish. Koninkl Akad Wetenschap 34:1417–1423Google Scholar
  148. Pikuta EV, Hoover RB, Bej AK, Marsic D, Detkova EN, Whitman WB, Krader P (2003) Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California. Extremophiles 7:327–334PubMedGoogle Scholar
  149. Pitt JI, Hocking AD (1985) Fungi and food spoilage, 1st ed. Academic Press, Sydney.Google Scholar
  150. Plakunov VK, Lobyreva LB (1985) Peculiarities of the transport of aromatic amino acids in extremely halophilic microorganisms. Microbiology 54:308–313Google Scholar
  151. Post FJ (1977) The microbial ecology of the Great Salt Lake. Microb Ecol 3:143–165PubMedGoogle Scholar
  152. Post FJ, Borowitzka LJ, Borowitzka MA, Mackay B, Moulton T (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105:95–113Google Scholar
  153. Provasoli L, McLaughlin JJA, Droop MR (1957) The development of artificial media for marine algae. Arch Mikrobiol 25:392–428PubMedGoogle Scholar
  154. Quesada E, Ventosa A, Rodriguez-Valera F, Megias L, Ramos-Cormenzana A (1983) Numerical taxonomy of moderately halophilic Gram-negative bacteria from hypersaline soils. J Gen Microbiol 129:2649–2657Google Scholar
  155. Quesada E, Bejar V, Valderrama MJ, Ventosa A, Cormenzana AR (1985) Isolation and char-ac-ter-i-za-tion of moderately halophilic nonmotile rods from different habitats. Microbiología 1:89–96PubMedGoogle Scholar
  156. Quesada E, Bejar V, Valderrama MJ, Ramos-Cormenzana A (1987) Growth characteristics and salt requirement of Deleya halophila in a defined medium. Curr Microbiol 16:21–25Google Scholar
  157. Ratton JJL (1877) A handbook of common salt. Higginbotham, Madras.Google Scholar
  158. Robertson ME (1931) A note on the cause of certain red coloration on salted hides and a comparison of growth and survival of halophilic or salt-loving organisms and some ordinary organisms of dirt putrefaction on media of varying salt concentrations. J Hyg 21:84–95Google Scholar
  159. Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1980) Isolation of extremely hal-o-phil-ic bacteria able to grow in defined inorganic media with single carbon sources. J Gen Microbiol 119:535–538Google Scholar
  160. Rodriguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microb Ecol 11:107–115PubMedGoogle Scholar
  161. Rubentschik L (1929) Zur Nitrifikation beihohen Salzkonzentrationen. Zentr Bakteriol Parasitenk, Abt II 77:1–8Google Scholar
  162. Sass AM, McKew BA, Sass H, Fichtel J, Timmis KN, McGenity TJ (2008) Diversity of Bacillus-like organisms from deep-sea hypersaline anoxic sediments. Saline Syst 4:8PubMedPubMedCentralGoogle Scholar
  163. Schneegurt MA, Wedel AN, Pokorski EW (2004) Safe, low-cost, salty microbiology for the classroom. Sci Teacher 71:40–43Google Scholar
  164. Schoop G (1935) Obligat halophile Mikroben. Zentr Bakteriol Parasitenk Orig, Abt I 134:14–23Google Scholar
  165. Sehgal SN, Gibbons NE (1960) Effect of some metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6:165–169PubMedGoogle Scholar
  166. Sharma AK, Walsh DA, Bapteste E, Rodriquez-Valera F, Doolittle WF, Papke RT (2007) Evolution of rhodopsin ion pumps in haloarchaea. BMC Evol Biol 7:79PubMedPubMedCentralGoogle Scholar
  167. Shiio I, Maruo B, Akabori S (1956) Transaminases in a halophilic bacterium No. 101. J Biochem 43:779–784Google Scholar
  168. Smith FB (1938) An investigation of a taint in the rib bones of bacon. The determination of halophilic vibrios. Proc R Soc Queensland 49:29–52Google Scholar
  169. Soliman GSH, Trüper HG (1982) Halobacterium pharaonis sp. nov., a new, extremely haloalkaliphilic archaebacterium with low magnesium requirement. Zentr Bakteriol Parasitenk Infek Hyg, Abt 1 3:318–329Google Scholar
  170. Sorokin DYu, Kovaleva OL, Tourova TP, Muyzer G (2010) Thiohalobacter thiocyanaticus gen. nov., sp. nov., a moderately halophilic, sulfur-oxidizing gammproteobacterium from hypersaline lakes, that utilizes thiocyanate. Int J Syst Evol Microbiol 60:444–450PubMedGoogle Scholar
  171. Starr R, Zeikus J (1987) UTEX—the culture collection of algae at the University of Texas at Austin. J Phycol 23(Suppl):1–47Google Scholar
  172. Stather F, Liebscher E (1929) Zur Bakteriologie des Rotwerdens gesalzener Rohhäute. 4. Mitteilung über häute- und lederschäden. Collegium 713:437–450Google Scholar
  173. Stuart LS (1940) Effect of protein concentration and cysteine on growth of halophilic bacteria. J Agric Res 61:267–275Google Scholar
  174. Stuart LS, Frey RW, James LH (1933) Microbiological studies of salt in relation to the reddening of salted hides. USDA Tech Bull 383Google Scholar
  175. Subov NN (1931) Oceanographical tables. USSR Oceanographical Institute, Hydrometeorological Communications, MoscowGoogle Scholar
  176. Tardy-Jacquenod C, Magot M, Patel BKC, Matherton R, Caumette P (1998) Desulfotomaculum hal-o-phil-um sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int J Syst Bacteriol 48:333–338PubMedGoogle Scholar
  177. Tindall DR, Yopp JH, Miller DM, Schmid WE (1978) Physico-chemical parameters governing the growth of Aphanothece halophytica (Chroococcales) in hypersaline media. Phycologia 17:179–185Google Scholar
  178. Tindall BJ, Mills AA, Grant WD (1980) An alkalophilic red halophilic bacterium with low magnesium requirement from a Kenyan soda lake. J Gen Microbiol 116:257–260Google Scholar
  179. Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new genera of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5:41–57Google Scholar
  180. Tomlinson GA, Hochstein LI (1972a) Isolation of carbohydrate-metabolizing, extremely halophilic bacteria. Can J Microbiol 18:698–701PubMedGoogle Scholar
  181. Tomlinson GA, Hochstein LI (1972b) Studies on acid production during carbohydrate metabolism by extremely halophilic bacteria. Can J Microbiol 18:1973–1976PubMedGoogle Scholar
  182. Tomlinson GA, Hochstein LI (1976) Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing extremely halophilic bacterium. Can J Microbiol 22:587–591PubMedGoogle Scholar
  183. Tomlinson GA, Jahnke LL, Hochstein LI (1986) Halobacterium dentrificans sp. nov., an extremely halophilic denitrifying bacterium. Int J Syst Bacteriol 36:66–70PubMedGoogle Scholar
  184. Torreblanca M, Rodriguez-Valera F, Juez G, Ventosa A, Kamekura M, Kates M (1986) Classification of non-alkaliphilic halobacteria based on numerical taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8:89–99Google Scholar
  185. Van Der Wielen PWJJ, Bolhuis H, Borin S, Daffonchio D, Corselli C, Giuliano L, D’Auria G, de Lange GJ, Huebner A, Varnavas SP, Thomson J, Tamburini C, Marty D, McGenity TJ, Timmis KN, BioDeep Scientific Party (2005) The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307:121–123PubMedGoogle Scholar
  186. Velu H (1929) Origine de l’agent du rouge des salaisons. Compt Rend Soc Biol 100:1094–1095Google Scholar
  187. Ventosa A, Quesada E, Rodriguez-Valera F, Ruiz-Berraquero F, Ramos-Cormenzana A (1982) Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968Google Scholar
  188. Volcani BE (1944) The microorganisms of the Dead Sea. In: Daniel Sieff Research Institute (ed) Papers Collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann. Daniel Sieff Research Institute, Rehovoth, pp 71–85Google Scholar
  189. Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. Crit Rev Microbiol 14:311–356PubMedGoogle Scholar
  190. Vreeland RH, Martin EL (1980) Growth characteristics, effects of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata. Can J Microbiol 26:746–752Google Scholar
  191. Vreeland RH, Litchfield CD, Martin EL, Elliot E (1980) Halomonaselongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495Google Scholar
  192. Vreeland RH, Straight S, Krammes J, Dougherty K, Rosenzweig WD, Kamekura M (2002) Halosimplexcarlsbadense gen. nov., sp. nov., a unique halophilic archaeon with three 16S rRNA genes, that grows only in defined medium with glycerol and acetate or pyruvate. Extremophiles 6:445–452PubMedGoogle Scholar
  193. Wais AC (1988) Recovery of halophilic archaebacteria from natural environments. FEMS Microbiol Ecol 53:211–216Google Scholar
  194. Weber MM (1949) Red halophilic microorganisms: A problem in the biochemical foundation of an ecological specialization. Biolog Rev 1:9–14Google Scholar
  195. Yopp JH, Tindall DR, Miller DM, Schmid WE (1978) Isolation, purification and evidence for a halophilic nature of the blue-green alga Aphanothece halophytica Fremy (Chroococcales) Phycologia 17:172–178Google Scholar
  196. Yu IK, Kawamura F (1987) Halomethanococcus doii gen. nov., sp. nov.: An obligately halophilic methanogenic bacterium from solar salt ponds. J Gen Appl Microbiol 33:303–310Google Scholar
  197. Zhilina TN, Zavarzin GA, Rainey FA, Pikuta EN, Osipov GA, Kostrikina NA (1997) Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149PubMedGoogle Scholar
  198. Zhilina TN (1986) Methanogenic bacteria from hypersaline environments. Syst Appl Microbiol 7:216–222Google Scholar
  199. ZoBell CE (1946) Marine microbiology. A monograph on hydrobacteriology. Chronica Botanica Co., WalthamGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesWichita State UniversityWichitaUSA

Personalised recommendations