Advertisement

Approaches Toward the Study of Halophilic Microorganisms in Their Natural Environments: Who Are They and What Are They Doing?

  • Aharon OrenEmail author

Abstract

Hypersaline lakes with salt concentrations exceeding 250 g/l are often characterized by very dense communities of halophilic microorganisms imparting a red coloration to the brines. Such red waters can be found in the North Arm of Great Salt Lake , Utah, in crystallizer ponds of solar salterns for the production of salt from seawater, and in many extremely hypersaline alkaline lakes. At times even the magnesium chloride-rich waters of the Dead Sea have become red as a result of massive development of pigmented salt-loving microorganisms.

References

  1. Antón J, Llobet-Brossa E, Rodríguez-Valera F, Amann R (1999) Fluorescence in situ hybridization analysis of the prokaryotic community inhabiting crystallizer ponds. Environ Microbiol 1:517–523PubMedGoogle Scholar
  2. Antón J, Rosselló-Mora R, Rodríguez-Valera F, Amann R (2000) Extremely halophilic Bacteria in crystallizer ponds from solar salterns. Appl Environ Microbiol 66:3052–3057PubMedPubMedCentralGoogle Scholar
  3. Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel extreme halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491PubMedGoogle Scholar
  4. Antón J, Peña A, Santos F, Martínez-García M, Schmitt-Kopplin P, Rosselló-Mora R (2008) Distribution, abundance and diversity of the extremely halophilic bacterium Salinibacter ruber. Sal Syst 4:15Google Scholar
  5. Baati H, Guermazi S, Amdouni R, Gharsallah N, Sghir A, Ammar E (2008) Prokaryotic diversity of a Tunisian multipond solar saltern. Extremophiles 12:505–518PubMedGoogle Scholar
  6. Baati H, Guermazi S, Gharsallah N, Sghir A, Ammar E (2010) Novel prokaryotic diversity in sediments of Tunisian multipond solar saltern. Res Microbiol 161:573–582PubMedGoogle Scholar
  7. Benlloch S, Martínez-Murcia AJ, Rodríguez-Valera F (1995) Sequencing of bacterial and archaeal 16S rRNA genes directly amplified from a hypersaline environment. Syst Appl Microbiol 18:574–581.Google Scholar
  8. Benlloch S, Acinas SG, Martínez-Murcia AJ, Rodríguez-Valera F (1996) Description of prokaryotic biodiversity along the salinity gradient of a multipond saltern by direct PCR amplification of 16S rDNA. Hydrobiologia 329:19–31Google Scholar
  9. Benlloch S, López-López A, Casamayor EO, Øvreås L, Goddard V, Dane FL, Smerdon G, Massana R, Joint I, Thingstad F, Pedrós-Alió C, Rodríguez-Valera F (2002) Prokaryotic genetic diversity throughout the salinity gradient of a coastal solar saltern. Environ Microbiol 4:349–360PubMedGoogle Scholar
  10. Brandt KK, Vester F, Jensen AN, Ingvorsen K (2001) Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA). Microb Ecol 41:1–11PubMedGoogle Scholar
  11. Brum JR, Steward GF (2010) Morphological characterization of viruses in the stratified water column of alkaline, hypersaline Mono Lake. Microb Ecol 60:636–643PubMedGoogle Scholar
  12. Burns DG, Camakaris HM, Janssen PH, Dyall-Smith ML (2004) Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl Environ Microbiol 70:5258–5265PubMedPubMedCentralGoogle Scholar
  13. Burns DG, Janssen PH, Itoh T, Kamekura M, Li Z, Jensen G, Rodríguez-Valera F, Bolhuis H, Dyall-Smith ML (2007) Haloquadratum walsbyi gen. nov., sp. nov., the square haloarchaeon of Walsby, isolated from saltern crystallizers in Australia and Spain. Int J Syst Evol Microbiol 57:387–392PubMedGoogle Scholar
  14. Canfield DE, Sørensen KB, Oren A (2004) Biogeochemistry of a gypsum-encrusted microbial ecosystem. Geobiology 2:133–150Google Scholar
  15. Casamayor EO, Massana R, Benlloch S, Øvreås L, Díez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348PubMedGoogle Scholar
  16. Corcelli A, Lobasso S (2006) Characterization of lipids of halophilic Archaea. In: Rainey FA, Oren A (eds) Extremophiles—Methods in microbiology, vol. 35. Elsevier/Academic Press, Amsterdam.Google Scholar
  17. Corcelli A, Lattanzio VMT, Mascolo G, Babudri F, Oren A, Kates M (2004) Novel sulfonolipid in the extremely halophilic bacterium Salinibacter ruber. Appl Environ Microbiol 70:6678–6685PubMedPubMedCentralGoogle Scholar
  18. Demergasso C, Escudero L, Casamayor EO, Chong G, Balagué V, Pedrós-Alió C (2008) Novelty and spatio-temporal heterogeneity in the bacterial diversity of hypersaline Lake Tebenquiche (Salar de Atacama). Extremophiles 12:491–504PubMedGoogle Scholar
  19. Diez B, Antón J, Guixa-Boixereu N, Pedrós-Alió C, Rodríguez-Valera F (2000) Pulsed-field gel electrophoresis analysis of virus assemblages present in a hypersaline environment. Int Microbiol 3:159–164PubMedGoogle Scholar
  20. Dussault HP (1956) Study of red halophilic bacteria in solar salt and salted fish: II. Bacto-oxgall as a selective agent for differentiation. J Fish Res Bd Canada 13:195–199Google Scholar
  21. Eder W, Ludwig W, Huber R (1999) Novel 16S rRNA gene sequences retrieved from highly saline brine sediments of Kebrit Deep, Red Sea. Arch Microbiol 172:213-218PubMedGoogle Scholar
  22. Eder W, Jahnke LL, Schmidt M, Huber R (2001) Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl Environ Microbiol 67:3077–3085PubMedPubMedCentralGoogle Scholar
  23. Eder W, Schmidt M, Koch M, Garbe-Schönberg D, Huber R (2002) Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep, Red Sea. Environ Microbiol 4:758–763PubMedGoogle Scholar
  24. Elevi Bardavid R, Oren A (2008a) Dihydroxyacetone metabolism in Salinibacter ruber and in Haloquadratum walsbyi. Extremophiles 12:125–131Google Scholar
  25. Elevi Bardavid R, Oren A (2008b) Sensitivity of Haloquadratum and Salinibacter to antibiotics and other inhibitors: implications for the assessment of the contribution of Archaea and Bacteria to heterotrophic activities in hypersaline environments. FEMS Microbiol Ecol 63:309–315Google Scholar
  26. Elevi Bardavid R, Oren A (2012) Acid-shifted isoelectric point profiles of the proteins in a hypersaline microbial mat—an adaptation to life at high salt concentrations? Extremophiles 16:787–792PubMedGoogle Scholar
  27. Elevi Bardavid R, Khristo P, Oren A (2008) Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds. Extremophiles 12:5–14Google Scholar
  28. Estrada M, Henriksen P, Gasol JM, Casamayor EO, Pedrós-Alió C (2004) Diversity of planktonic photoautotrophic microorganisms along a salinity gradients as depicted by microscopy, flow cytometry, pigment analysis and DNA-based methods. FEMS Microbiol Ecol 49:281–293PubMedGoogle Scholar
  29. Ferrer M, Werner J, Chernikova TN, Bargiela R, Fernández L, La Cono V, Waldmann J, Teeling H, Golyshina OV, Glöckner FO, Yakimov MM, Golyshin PN, the MAMBA Scientific Consortium (2012) Unveiling microbial life in the new deep-sea hypersaline Lake Thetis. Part II: a metagenomic study. Environ Microbiol 14:268–281.PubMedGoogle Scholar
  30. Garcia-Heredia I, Martin-Cuadrado A-B, Mojica FJM, Santos F, Mira A, Antón J, Rodríguez-Valera F (2012) Reconstructing viral genomes from the environment using fosmid clones: the case of haloviruses. PLoS One 7:e33802Google Scholar
  31. Gareeb AP, Setati ME (2009) Assessment of alkaliphilic haloarchaeal diversity in Sua pan evaporator ponds in Botswana. Afr J Biotechnol 8:259–267Google Scholar
  32. Gasol JM, Casamayor EO, Joint I, Garde K, Gustavson K, Benlloch S, Díez B, Schauer M, Massana R, Pedrós-Alió C (2004) Control of heterotrophic prokaryotic abundance and growth rate in hypersaline planktonic environments. Aquat Microb Ecol 34:193–206.Google Scholar
  33. Ghai R, Fernández AB, Martin-Cuadrado A-B, Megumi Mizuno C, McMahon KD, Papke RT, Stepanauskas R, Rodriguez-Brito B, Rohwer F, Sánchez-Porro C, Ventosa A, Rodríguez-Valera F (2011) New abundant microbial groups in aquatic hypersaline environments. Sci Rep 1:135.PubMedPubMedCentralGoogle Scholar
  34. Giri BJ, Bano N, Hollibaugh JT (2004) Distribution of RuBisCO genotypes along a redox gradient in Mono Lake, California. Appl Environ Microbiol 70:3443–3448.Google Scholar
  35. Grant S, Grant WD, Jones BE, Kato C, Li L (1999) Novel archaeal phylotypes from an East African alkaline saltern. Extremophiles 3:139–145.PubMedGoogle Scholar
  36. Guixa-Boixareu N, Calderón-Paz JI, Heldal M, Bratbak G, Pedrós-Alió C (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat Microb Ecol 11;215–227.Google Scholar
  37. Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A (2000) Hypersaline water in salterns—natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240.Google Scholar
  38. Humayoun SB, Bano N, Hollibaugh JT (2003) Depth distribution of microbial diversity in Mono Lake, a meromictic soda lake in California. Appl Environ Microbiol 69:1030–1042.Google Scholar
  39. Ionescu D, Lipski A, Altendorf K, Oren A (2007) Characterization of the endoevaporitic microbial communities in a hypersaline gypsum crust by fatty acid analysis. Hydrobiologia 576:15–26.Google Scholar
  40. Javor BJ (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol Oceanogr 28:153–159.Google Scholar
  41. Javor B (1989) Hypersaline environments. Microbiology and biogeochemistry. Springer-Verlag, Berlin.Google Scholar
  42. Jiang S, Steward G, Jellison R, Chu W, Choi S (2004) Abundance, distribution, and diversity of viruses in alkaline, hypersaline Mono Lake, California. Microb Ecol 47:9–17.Google Scholar
  43. Joint I, Henriksen P, Garde K, Riemann B (2002) Primary production, nutrient assimilation and microzooplankton grazing along a hypersaline gradient. FEMS Microbiol Ecol 39:245–257.PubMedGoogle Scholar
  44. Joye SB, Samarkin VA, Orcutt BM, MacDonald IR, Hinrichs K-U, Elvert M, Teske AP, Lloyd KG, Lever MA, Montoya JP, Meile CD (2009) Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nature Geosci 2:349–354.Google Scholar
  45. Kamekura M, Oesterhelt D, Wallace R, Anderson P, Kushner DJ (1988) Lysis of halobacteria in Bacto-peptone by bile acids. Appl Environ Microbiol 54:990–995.PubMedPubMedCentralGoogle Scholar
  46. Kis-Papo T, Oren A (2000) Halocins: are they important in the competition between different types of halobacteria in saltern ponds? Extremophiles 4:35–41.PubMedGoogle Scholar
  47. Kjeldsen KU, Loy A, Jakobsen TF, Thomsen TR, Wagner M, Ingvorsen K (2006) Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol Ecol 60:287–298.Google Scholar
  48. Kunin V, Raes J, Harris JK, Spear JR, Walker JJ, Ivanova N, von Mering C, Bebout BM, Pace NR, Bork P, Hugenholtz P (2008) Millimeter scale genetic gradients and community-level molecular convergence in a hypersaline microbial mat. Mol Systems Biol 4:198.Google Scholar
  49. La Cono V, Smedile F, Bortoluzzi G, Arcadi E, Maimone G, Messina E, Borghini M, Oliveri E, Mazzola S, L’Haridon S, Toffin L, Genovese L, Ferrer M, Giuliano L, Golyshin PN, Yakimov MM (2011) Unveiling microbial life in new deep-sea hypersaline Lake Thetis. Part I: Prokaryotes and environmental settings. Environ Microbiol 13:2250–2268.PubMedGoogle Scholar
  50. Lattanzio V, Corcelli A, Mascolo G, Oren A (2002) Presence of two novel cardiolipins in the halophilic archaeal community in the crystallizer brines from the salterns of Margherita di Savoia (Italy) and Eilat (Israel). Extremophiles 6:437–444.PubMedGoogle Scholar
  51. Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodríguez-Valera F, Papke RT (2006) Environmental genomics of "Haloquadratum walsbyi" in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics 7:171.PubMedPubMedCentralGoogle Scholar
  52. Leuko S, Legat A, Fendrihan S, Stan-Lotter H (2004) Evaluation of the LIVE/DEAD BacLight kit for detection of extremophilic Archaea and visualization of microorganisms in environmental hypersaline samples. Appl Environ Microbiol 70:6884–6886.PubMedPubMedCentralGoogle Scholar
  53. Leuko S, Goh F, Allen MA, Burns BP, Walter MR, Neilan BA (2007) Analysis of intergenic spacer region length polymorphisms to investigate the halophilic archaeal diversity of stromatolites and microbial mats. Extremophiles 11:203–210.PubMedGoogle Scholar
  54. Leuko S, Goh F, Ibáñez-Peral R, Burns BP, Walker MR, Neilan BA (2008) Lysis efficiency of standard DNA extraction methods for Halococcus spp. in an organic rich environment. Extremophiles 12:301-308.PubMedGoogle Scholar
  55. Litchfield CD, Gillivet PM (2002) Microbial diversity and complexity in hypersaline environments: a preliminary assessment. J Ind Microbiol Biotchnol 28:48–55.Google Scholar
  56. Litchfield CD, Oren A (2001) Polar lipids and pigments as biomarkers for the study of the microbial community structure of solar salterns. Hydrobiologia 466:81–89.Google Scholar
  57. Litchfield CD, Irby A, Kis-Papo T, Oren A (2000) Comparisons of the polar lipid and pigment profiles of two solar salterns located in Newark, California, USA, and Eilat, Israel. Extremophiles 4:259–265.PubMedGoogle Scholar
  58. Litchfield CD, Irby A, Kis-Papo T, Oren A (2001) Comparative metabolic diversity in two solar salterns. Hydrobiologia 466:73–80.Google Scholar
  59. Litchfield CD, Sikaroodi M, Gillivet PM (2006) Characterization of natural communities of halophilic microorganisms. In: Rainey FA, Oren A (eds), Extremophiles—Methods in microbiology, vol. 35. Elsevier/Academic Press, Amsterdam.Google Scholar
  60. Lobasso S, Lopalco P, Mascolo G, Corcelli A (2008) Lipids of the ultra-thin square halophilic archaeon Haloquadratum walsbyi. Archaea 2:177–181.PubMedPubMedCentralGoogle Scholar
  61. Lopalco P, Lobasso S, Baronio M, Angelini R, Corcelli A (2011) Impact of lipidomics on the microbial world of hypersaline environments. In: Ventosa A, Oren A, Ma Y (eds), Halophiles and hypersaline environments. Current research and future trends. Springer, Heidelberg.Google Scholar
  62. Lutnæs BF, Oren A, Liaaen-Jensen S (2002) New C40-carotenoid acyl glycoside as principal carotenoid of Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343.PubMedGoogle Scholar
  63. Ma Y, Zhang W, Xue Y, Zhou P, Ventosa A, Grant WD (2004) Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses. Extremophiles 8:45–51.PubMedGoogle Scholar
  64. Makhdoumi-Kakhki A, Amoozegar MA, Kazemi B, Pašić L, Ventosa A (2012) Prokaryotic diversity in Aran-Bidgol salt lake, the largest hypersaline playa in Iran. Microbes Environ 27:87–93.PubMedGoogle Scholar
  65. Manikandan M, Kannan V, Pašić L (2009) Diversity of microorganisms in solar salterns of Tamil Nadu, India. World J Microbiol Biotechnol 25:1007–1017.Google Scholar
  66. Maturrano L, Santos F, Rosselló-Mora R, Antón J (2006) Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl Environ Microbiol 72:3887–3895.PubMedPubMedCentralGoogle Scholar
  67. Mesbah NM, Abou-El-Ela SH, Wiegel J (2007) Novel and unexpected prokaryotic diversity in water and sediments of the alkaline, hypersaline lakes of the Wadi An Natrun, Egypt. Microb Ecol 54:598–617.PubMedGoogle Scholar
  68. Mouné S, Caumette P, Matheron R, Willison JC (2002) Molecular sequence analysis of prokaryotic diversity in the anoxic sediments underlying cyanobacterial mats of two hypersaline ponds in Mediterranean salterns. FEMS Microbiol Ecol 44:117–130.Google Scholar
  69. Mwrichia R, Cousin S, Muigai AW, Boga HI, Stackebrandt E (2010) Archaeal diversity in the haloalkaline Lake Elmenteita in Kenya. Curr Microbiol 60:47–52.Google Scholar
  70. Narasingarao P, Podell S, Ugalde JA, Brochier-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (2012) De novo assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J 6:81–93.PubMedGoogle Scholar
  71. Nissenbaum A, Kaplan IR (1976) Sulfur and carbon isotopic evidence for biogeochemical processes in the Dead Sea. In: Nriagu JO (ed), Environmental biogeochemistry, vol. 1. Ann Arbor Science Publishers, Ann Arbor.Google Scholar
  72. Ochsenreiter T, Pfeifer F, Schleper C (2002) Diversity of Archaea in hypersaline environments characterized by molecular-phylogenetic and cultivation studies. Extremophiles 6:267–274.PubMedGoogle Scholar
  73. Oremland RS, King GM (1989) Methanogenesis in hypersaline environments. In: Cohen Y, Rosenberg E (eds), Microbial mats. Physiological ecology of benthic microbial communities. American Society for Microbiology, Washington, DC.Google Scholar
  74. Oren A (1983a) Population dynamics of halobacteria in the Dead Sea water column. Limnol Oceanogr 28:1094–1103.Google Scholar
  75. Oren A (1983b) Bacteriorhodopsin-mediated CO2 photoassimilation in the Dead Sea. Limnol Oceanogr 28:33–41.Google Scholar
  76. Oren A (1989) A method for the differential microscopic enumeration of Halobacterium cells. J Microbiol Meth 10:183–187.Google Scholar
  77. Oren A (1990a) Formation and breakdown of glycine betaine and trimethylamine in hypersaline environments. Antonie van Leeuwenhoek 58:291–298.PubMedGoogle Scholar
  78. Oren A (1990b) Thymidine incorporation in saltern ponds of different salinities: estimation of in situ growth rates of halophilic archaeobacteria and eubacteria. Microb Ecol 19:43–51.PubMedGoogle Scholar
  79. Oren A (1990c) The use of protein synthesis inhibitors in the estimation of the contribution of halophilic archaebacteria to bacterial activity in hypersaline environments. FEMS Microbiol Ecol 73:187–192.Google Scholar
  80. Oren A (1990d) Estimation of the contribution of halobacteria to the bacterial biomass and activity in a solar saltern by the use of bile salts. FEMS Microbiol Ecol 73:41–48.Google Scholar
  81. Oren A (1992) Bacterial activities in the Dead Sea, 1980–1991: survival at the upper limit of salinity. Int J Salt Lake Res 1:7–20.Google Scholar
  82. Oren A (1993) Availability, uptake, and turnover of glycerol in hypersaline environments. FEMS Microbiol Ecol 12:15–23.Google Scholar
  83. Oren A (1994) Characterization of the halophilic archaeal community in saltern crystallizer ponds by means of polar lipid analysis. Int J Salt Lake Res 3:15–29.Google Scholar
  84. Oren A (1995a) Uptake and turnover of acetate in hypersaline environments. FEMS Microbiol Ecol 18;75–84.Google Scholar
  85. Oren A (1995b) The role of glycerol in the nutrition of halophilic archaeal communities: a study of respiratory electron transport. FEMS Microbiol Ecol 16:281–290.Google Scholar
  86. Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348.PubMedPubMedCentralGoogle Scholar
  87. Oren A (2001) The bioenergetic basis for the decrease in metabolic diversity in increasing salt concentrations: implications for the functioning of salt lake ecosystems. Hydrobiologia 466:61–72.Google Scholar
  88. Oren A (2002a) Halophilic microorganisms and their environments. Kluwer Scientific Publishers, Dordrecht.Google Scholar
  89. Oren A (2002b) Molecular ecology of extremely halophilic Archaea and Bacteria. FEMS Microbiol Ecol 39:1–7.PubMedGoogle Scholar
  90. Oren A (2006) Life at high salt concentrations. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds), The prokaryotes. A handbook on the biology of bacteria: Ecophysiology and biochemistry, vol. 2. Springer, New York, NY.Google Scholar
  91. Oren A (2009) Microbial diversity and microbial abundance in salt-saturated brines: why are the waters of hypersaline lakes red? In: Oren A, Naftz DL, Palacios P, Wurtsbaugh WA (eds), Saline lakes around the world: Unique systems with unique values, The S.J. and Jessie E. Quinney Natural Resources Research Library, College of Natural Resources, Utah State University, Salt Lake City, UT.Google Scholar
  92. Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ Microbiol 13:1908–1923.PubMedGoogle Scholar
  93. Oren A, Ben-Yosef N (1997) Development and spatial distribution of an algal bloom in the Dead Sea: A remote sensing study. Aquat Microb Ecol 13:219–223.Google Scholar
  94. Oren A, Dubinsky Z (1994) On the red coloration of saltern crystallizer ponds. II. Additional evidence for the contribution of halobacterial pigments. Int J Salt Lake Res 3:9–13.Google Scholar
  95. Oren A, Gurevich P (1993) Characterization of the dominant halophilic archaea in a bacterial bloom in the Dead Sea. FEMS Microbiol Ecol 12:249–256.Google Scholar
  96. Oren A, Gurevich P (1994) Production of D-lactate, acetate, and pyruvate from glycerol in communities of halophilic archaea in the Dead Sea and in saltern crystallizer ponds. FEMS Microbiol Ecol 14:147–156.Google Scholar
  97. Oren A, Gurevich P (1995) Dynamics of a bloom of halophilic archaea in the Dead Sea. Hydrobiologia 315:149–158.Google Scholar
  98. Oren A, Rodríguez-Valera F (2001) The contribution of Salinibacter species to the red coloration of saltern crystallizer ponds. FEMS Microbiol Ecol 36:123–130.PubMedGoogle Scholar
  99. Oren A, Shilo M (1981) Bacteriorhodopsin in a bloom of halobacteria in the Dead Sea. Arch Microbiol 130:185–187.Google Scholar
  100. Oren A, Shilo M (1982) Population dynamics of Dunaliella parva in the Dead Sea. Limnol Oceanogr 27;201–211.Google Scholar
  101. Oren A, Stambler N, Dubinsky Z (1992) On the red coloration of saltern crystallizer ponds. Int J Salt Lake Res 1:77–89.Google Scholar
  102. Oren A, Fischel U, Aizenshtat Z, Krein EB, Reed RH (1994) Osmotic adaptation of microbial communities in hypersaline microbial mats. In: Stal LJ, Caumette P (eds), Microbial mats. Structure, development and environmental significance. Springer-Verlag, Berlin.Google Scholar
  103. Oren A, Gurevich P, Anati DA, Barkan E, Luz B (1995a) A bloom of Dunaliella parva in the Dead Sea in 1992: biological and biogeochemical aspects. Hydrobiologia 297:173–185.Google Scholar
  104. Oren A, Kühl M, Karsten U (1995b) An endoevaporitic microbial mat within a gypsum crust: zonation of phototrophs, photopigments, and light penetration. Mar Ecol Prog Ser 128:151–159.Google Scholar
  105. Oren A, Duker S, Ritter S (1996) The polar lipid composition of Walsby’s square bacterium. FEMS Microbiol Lett 138:135–140.Google Scholar
  106. Oren A, Bratbak G, Heldal M (1997) Occurrence of virus-like particles in the Dead Sea. Extremophiles 1:143–149.PubMedGoogle Scholar
  107. Oren A, Ionescu D, Lipski A, Altendorf K (2005) Fatty acid analysis of a layered community of cyanobacteria developing in a hypersaline gypsum crust. Algol Stud 117:339–347.Google Scholar
  108. Oren A, Sørensen KB, Canfield DE, Teske AP, Ionescu D, Lipski A, Altendorf K (2009) Microbial communities and processes within a hypersaline gypsum crust in a saltern evaporation pond (Eilat, Israel). Hydrobiologia 626:15–26.Google Scholar
  109. Øvreås L, Daae FL, Torsvik T, Rodríguez-Valera F (2003) Characterization of microbial diversity in hypersaline environments by melting profiles and reassociation kinetics in combination with terminal restriction fragment length polymorphism (T-RFLP). Microb Ecol 46:291–301.PubMedGoogle Scholar
  110. Pagaling E, Wang H, Venables M, Wallace A, Grant WD, Cowan DA, Jones BE, Ma Y, Ventosa A, Heaphy S (2009) Microbial biogeography of six salt lakes in Inner Mongolia, China, and a salt lake in Argentina. Appl Environ Microbiol 75:5750–5760.PubMedPubMedCentralGoogle Scholar
  111. Parnell JJ, Rompato G, Latta LC, IV, Pfender ME, Van Nostrand JD, He Z, Zhou J, Andersen G, Champine P, Ganesan B, Weimer BC (2010) Functional biogeography as evidence of gene transfer in hypersaline microbial communities. PLoS One 5:e12919.Google Scholar
  112. Pašić L, Galán Bartual S, Poklar Ulrih N, Grabnar M, Herzog Velikonja B (2005) Diversity of halophilic archaea in the crystallizers of an Adriatic solar saltern. FEMS Microbiol Ecol 54:491–498.PubMedGoogle Scholar
  113. Pašić L, Poklar Ulrih N, Črnigoj M, Grabnar M, Herzog Velikonja B (2007) Haloarchaeal communities in the crystallizers of two Adriatic solar salterns. Can J Microbiol 53:8–18.PubMedGoogle Scholar
  114. Pedrós-Alió C, Calderón-Paz JI, MacLean MH, Medina G, Marassé C, Gasol JM, Guixa-Boixereu N (2000a) The microbial food web along salinity gradients. FEMS Microbiol Ecol 32:143–155.PubMedGoogle Scholar
  115. Pedrós-Alió C, Calderón-Paz JI, Gasol JM (2000b) Comparative analysis shows that bacterivory, not viral lysis, controls the abundance of heterotrophic prokaryotic plankton. FEMS Microbiol Ecol 32:157–165.PubMedGoogle Scholar
  116. Porter D, Roychoudhury AN, Cowan D (2007) Dissimilatory sulfate reduction in hypersaline coastal pans: Activity across a salinity gradient. Geochim Cosmochim Acta 71:5102–5116.Google Scholar
  117. Prášil O, Bina D, Medová H, Řeháková K, Zapomělová E, Veselá J, Oren A (2009) Emission spectroscopy and kinetic fluorimetry studies of the phototrophic microbial communities along the salinity gradient in the solar saltern evaporation ponds of Eilat, Israel. Aquat Microb Ecol 56:285–296.Google Scholar
  118. Rees HC, Grant WD, Jones BE, Heaphy S (2004) Diversity of Kenyan soda lake alkaliphiles assessed by molecular methods. Extremophiles 8:63–71.PubMedGoogle Scholar
  119. Roberts MF (2006) Characterization of organic compatible solutes of halotolerant and halophilic microorganisms. In: Rainey FA, Oren A (eds), Extremophiles—Methods in microbiology, vol. 35. Elsevier/Academic Press, AmsterdamGoogle Scholar
  120. Robertson CE, Spear JR, Harris JK, Pace NR (2009) Diversity and stratification of archaea in a hypersaline microbial mat. Appl Environ Microbiol 75:1801–1810.PubMedGoogle Scholar
  121. Rodriguez-Brito B, Li L, Wegley L, Furlam M, Angly F, Breitbart M, Buchanan J, Desnues C, Dinsdale E, Edwards R, Felts B, Haynes M, Liu H, Lipson D, Mahaffy J, Martin-Cuadrado AB, Mira A, Nulton J, Pašić L, Rayhawk S, Rodriguez-Mueller J, Rodriguez-Valera F, Salamon P, Srinagesh S, Thingstad TF, Tran T, Thurber RV, Willner D, Youle M, Rohwer F (2010) Viral and microbial community dynamics in four aquatic environments. ISME J 4:739–751.PubMedGoogle Scholar
  122. Rosselló-Mora R, Lee N, Antón J, Wagner M (2003) Substrate uptake in extremely halophilic microbial communities revealed by microautoradiography and fluorescence in situ hybridization. Extremophiles 7:409–413.PubMedGoogle Scholar
  123. Rosselló-Mora R, Lucio M, Peña A, Brito-Echeverría J, López-López A, Valens-Vadell M, Frommberger M, Antón J, Schmitt-Kopplin P (2008) Metabolic evidence for biogeographic isolation of the extremophilic bacterium Salinibacter ruber. ISME J 2:242–253.PubMedGoogle Scholar
  124. Sabet S (2012) Halophilic viruses. Springer, DordrechtGoogle Scholar
  125. Sandaa R-A, Skjodal EF, Bratbak G (2003) Virioplankton community structure along a salinity gradient in a solar saltern. Extremophiles 7:347–351.PubMedGoogle Scholar
  126. Santos F, Meyerdierks A, Peña A, Rosselló-Mora R, Amann R, Antón J (2007) Metagenomic approach to the study of halophages: the environmental halophage 1. Environ Microbiol 9:1711–1723.PubMedGoogle Scholar
  127. Santos F, Moreno-Paz M, Meseguer I, López C, Rosselló-Mora R, Parro V, Antón J (2011) Metatranscriptomic analysis of extremely halophilic viral communities. ISME J 5:1621–1633.PubMedPubMedCentralGoogle Scholar
  128. Santos F, Yarza P, Parro V, Meseguer I, Rosselló-Mora R, Antón J (2012) Culture-independent approaches for studying viruses from hypersaline environments. Appl Environ Microbiol 78:1635–1643.PubMedPubMedCentralGoogle Scholar
  129. Scholten JCM, Joye SB, Hollibaugh JT, Murrell JC (2005) Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA, apsA, and dsrAB genes. Microb Ecol 50:29–39.PubMedGoogle Scholar
  130. Shand RF (2006) Detection, quantification and purification of halocins: peptide antibiotics from haloarchaeal extremophiles. In: Rainey FA, Oren A (eds), Extremophiles—Methods in microbiology, vol. 35. Elsevier/Academic Press, Amsterdam.Google Scholar
  131. Sher J, Elevi R, Mana L, Oren A (2004) Glycerol metabolism in the extremely halophilic bacterium Salinibacter ruber. FEMS Microbiol Lett 232:211–215.PubMedGoogle Scholar
  132. Sime-Ngando T, Lucas S, Robin A, Pause Tucker K, Colombet J, Forterre P, Breitbart M, Prangishvili D (2011) Diversity of virus-host systems in hypersaline Lake Retba, Senegal. Environ Microbiol 13:1956–1972.PubMedGoogle Scholar
  133. Sørensen KB, Canfield DE, Oren A (2004) Salt responses of benthic microbial communities in a solar saltern (Eilat, Israel). Appl Environ Microbiol 70:1608–1616.PubMedPubMedCentralGoogle Scholar
  134. Sørensen KB, Canfield DE, Teske AP, Oren A (2005) Community composition of a hypersaline endoevaporitic microbial mat. Appl Environ Microbiol 71:7352–7365.PubMedPubMedCentralGoogle Scholar
  135. Stan-Lotter H, Leuko S, Legat A, Fendrihan S (2006) The assessment of the viability of halophilic microorganisms in natural communities. In: Rainey FA, Oren A (eds), Extremophiles—Methods in microbiology, vol. 35. Elsevier/Academic Press, Amsterdam.Google Scholar
  136. Stephens DW, Gillespie DM (1976) Phytoplankton production in the Great Salt Lake, Utah, and a laboratory study of algal response to enrichment. Limnol Oceanogr 21:74–87.Google Scholar
  137. Stoeckenius W, Bivin D, McGinnis K (1985) Photoactive pigments in halobacteria from the Gavish sabkha. In: Friedman GM, Krumbein WE (eds), Hypersaline ecosystems. The Gavish sabkha. Springer-Verlag, Berlin.Google Scholar
  138. Stock A, Breiner H-W, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34.PubMedGoogle Scholar
  139. Vaisman A, Oren A (2009) Salisaeta longa gen. nov., sp. nov., a red halophilic bacterium isolated from an experimental mesocosm at Sedom, Israel. Int J Syst Evol Microbiol 59:2571–2574.PubMedGoogle Scholar
  140. Valenzuela-Encinas C, Neria-González I, Alcántara-Hernández RJ, Enríquez-Aragón JA, Estrada-Alvarado I, Hernández-Rodríguez C, Dendooven L, Marsch R (2008) Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles 12:247–254.PubMedGoogle Scholar
  141. Van Der Wielen PWJJ, Heijs SK (2007) Sulfate-reducing prokaryotic communities in two deep hypersaline anoxic basins in the Eastern Mediterranean deep sea. Environ Microbiol 9:1335–1340.PubMedGoogle Scholar
  142. Wais AC, Daniels LL (1985) Populations of bacteriophage infecting Halobacterium in a transient brine pool. FEMS Microbiol Ecol 31:323–326.Google Scholar
  143. Wang C-Y, Ng C-C, Chen T-W, Wu S-J, Shyu Y-T (2007) Microbial diversity analysis of former salterns in southern Taiwan by 16S rRNA-based methods. J Basic Microbiol 7:525–533.Google Scholar
  144. Warkentin M, Schumann R, Oren A (2009) Community respiration studies in saltern crystallizer ponds. Aquat Microb Ecol 56:255–261.Google Scholar
  145. Welsh DT (2000) Ecological significance of compatible solute accumulation by micro-organisms: from single cells to global climate. FEMS Microbiol Rev 24:263–290.PubMedGoogle Scholar
  146. Wu QL, Zwart G, Schauer M, Kamst-van Agterveld MP, Hahn MW (2006) Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan plateau, China. Appl Environ Microbiol 72:5478–5485.PubMedPubMedCentralGoogle Scholar
  147. Youssef NH, Ashlock-Savage KN, Elshahed M (2012) Phylogenetic diversities and community structure of members of the extremely halophilic Archaea (order Halobacteriales) in multiple saline sediment habitats. Appl Environ Microbiol 78:1332–1344.PubMedPubMedCentralGoogle Scholar
  148. Zalar P, Kocuvan MA, Plemenitaš A, Gunde-Cimerman N (2005) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Plant and Environmental Sciences, The Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations