Advertisement

Assessment of HONO Measurements: The FIONA Campaign at EUPHORE

  • Mila RódenasEmail author
  • Amalia Muñoz
  • Francisco Alacreu
  • Theo Brauers
  • Hans-Peter Dorn
  • Jörg Kleffmann
  • William Bloss
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

HONO is an important source of OH-radicals, the major oxidant in the atmosphere during daytime that participates in ozone formation and can lead to photo-smog. Nevertheless, there are still many open questions about its formation and role as a source of OH-radicals. A better knowledge of HONO processes is highly desirable for the improvement of air pollution models, many of which do not currently include heterogeneous HONO production mechanisms. One reason for the uncertainties in the atmospheric role of HONO is the difficulty in measuring this species.

To elucidate both aspects – chemical and instrumental issues – a HONO intercomparison campaign was carried out at the EUPHORE simulation chambers within the framework of the EUROCHAMP-2 project, in May 2010. EUPHORE provided a large and well-mixed gas volume for the simultaneous operation of multiple instruments under well controlled, realistic conditions. Ten experiments were carried out to simulate typical urban and semi-rural conditions and to address the following topics: (i) intercomparison of the different techniques, (ii) study of interferences (aerosols, nitrates, nitrites, NO2, etc.) and (iii) HONO sources (nitrophenols, vehicle emissions, ambient air, etc.). The first three experiments were part of an open-informal intercomparison while the rest of the intercomparison experiments were conducted under formally blind conditions with an external referee. The extensive participant list included the majority of groups working in this area globally, running simultaneously 18 techniques/instruments that covered nearly the whole range of techniques capable of measuring HONO. These included spectroscopic and chemical instruments.

In this work, an overview of the campaign in terms of participants, instruments aim of the experiments, etc. is presented, as well as the results of a selected open experiment.

Keywords

HONO FIONA Intercomparison Simulation chambers EUPHORE 

Notes

Acknowledgments

The authors wish to acknowledge the European Community’s Seventh Framework Program under the grant agreement no. 228335 (Eurochamp2) through the TA E2-2009-12-29-0014 and E2-2010-02-15-0020.

The Instituto Universitario CEAM-UMH is partly supported by Generalitat Valenciana, and the projects GRACCIE (Consolider-Ingenio 2010) and FEEDBACKS (Prometeo – Generalitat Valenciana). EUPHORE instrumentation is partly funded by the Spanish Ministry of Science and Innovation, through INNPLANTA project: PCT-440000-2010-003

The FIONA Team

A. Muñoz1, M. Ródenas1, F. Alacreu1, H-P. Dorn2, T. Brauers2, J. Kleffmann3, P. Mikuška5, Z. Večeřa5, R. Häseler2, C. Ye2, A. Ruth6, S. Dixneuf6, D. Venables6, S. Darby6, J. Chen6, E. Ashu-Ayem6, Y. Elshorbany3, C. Voigt7, P. Jessberger7, S. Kaufmann7, D. Schäuble7, A. Mellouki8, M. Cazaunau8, B. Grosselin8, J.-F. Doussin9, A. Colomb9, V. Michoud9, K. Miet9, C. Afif9, S. Ball10, M. Daniels10, I. Goodall10, D. Tan11, R. Stickel11, A. Case12, B. Rappenglück13, G. Croxatto13, J. Dibb14, E. Scheuer14, X. Zhou15, M. Ferm16, R. Varma17, M. Pilling18, E. Clemente1, R. Porras1, T. Vera1, M. Vázquez1, E. Borrás1, J. Valero1, W. Bloss4.

1Instituto Universitario UMH – CEAM, Paterna, Valencia, Spain

2Forschungszentrum Jülich, Jülich, ICG-2, Germany

3Bergische Universität Wuppertal (BUW), Wuppertal, Germany

4University of Birmingham, Birmingham, UK

5Institute of Analytical Chemistry–Brno, Brno, Czech Republic

6University College Cork, Cork, Ireland

7German Aerospace Center – DLR, Bonn, Germany

8CNRS – ICARE, Orleans, France

9LISA, University Paris-12, Paris, France

10Univeristy of Leicester, Leicester, UK

11Georgia Technology, Atlanta, GA, USA

12University of Louisiana, Monroe, LA, USA

13University of Houston, Houston, TX, USA

14University of New Hampshire, Durham, NH, USA

15Wadsworth Center and SUNY Albany, NY, USA

16Swedish Environmental Research Institute, Göteborg, Sweden

17National Institute of Technology – NIT Calicut, Kerala, India

18University of Leeds, Leeds, UK

References

  1. 1.
    Acker K, Möller D, Wieprecht W, Meixner FX, Bohn B, Gilge S, Plass-Dülmer C, Berresheim H (2006) Strong daytime production of OH from HNO2 at a rural mountain site. Geophys Res Lett 33(2):L02809CrossRefGoogle Scholar
  2. 2.
    Alicke B, Platt U, Stutz J (2002) Impact of nitrous acid photolysis on the total hydroxyl radical budget during the Limitation of Oxidant Production/Pianura Padana Produzione di Ozono study in Milan. J Geophys Res 107(D22):8196CrossRefGoogle Scholar
  3. 3.
    Alicke B, Geyer A, Hofzumahaus A, Holland F, Konrad S, Pätz H-W, Schäfer J, Stutz J, Volz-Thomas A, Platt U (2003) OH formation by HONO photolysis during the BERLIOZ experiment. J Geophys Res 108(D4):8247CrossRefGoogle Scholar
  4. 4.
    Appel BR, Winer AM, Tokiwa Y, Biermann HW (1990) Comparison of atmospheric nitrous acid measurements by annular denuder and optical absorption systems. Atmos Environ 24(A):611–616Google Scholar
  5. 5.
    Ball SM, Langridge JM, Jones RL (2004) Broadband cavity enhanced absorption spectroscopy using light emitting diodes. Chem Phys Lett 398:68–74CrossRefGoogle Scholar
  6. 6.
    Becker KH (1996) The European photoreactor EUPHORE final report of the EC-project EUPHORE, contract EV5V-CT92-0059, WuppertalGoogle Scholar
  7. 7.
    Calvert JG, Yarwood G, Dunker AM (1994) An evaluation of the mechanism of nitrous acid formation in the urban atmosphere. Res Chem Intermed 20:463–502Google Scholar
  8. 8.
    Dibb JE, Arsenault M, Peterson MC, Honrath RE (2002) Fast nitrogen oxide photochemistry in Summit, Greenland snow. Atmos Environ 36:2501–2511CrossRefGoogle Scholar
  9. 9.
    Dibb JE, Huey LG, Slusher DL, Tanner DJ (2004) Soluble reactive nitrogen oxides at South Pole during ISCAT 2000. Atmos Environ 38:5399–5409CrossRefGoogle Scholar
  10. 10.
    Elshorbany YF, Kurtenbach R, Wiesen P, Lissi E, Rubio M, Villena G, Gramsch E, Rickard AR, Pilling MJ, Kleffmann J (2009) Oxidation capacity of the city air of Santiago, Chile. Atmos Chem Phys 9:2257–2273CrossRefGoogle Scholar
  11. 11.
    Elshorbany YF, Kleffmann J, Kurtenbach R, Lissi E, Rubio M, Villena G, Gramsch E, Rickard AR, Pilling MJ, Wiesen P (2010) Seasonal dependence of the oxidation capacity of the city of Santiago de Chile. Atmos Environ 44:5383–5394CrossRefGoogle Scholar
  12. 12.
    Gherman T, Venables DS, Vaughan S, Orphal J, Ruth AA (2008) Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2. Environ Sci Technol 42(3):890–895CrossRefGoogle Scholar
  13. 13.
    Harrison RM, Kitto AMN (1994) Evidence for a surface source of atmospheric nitrous acid. Atmos Environ 28:1089–1094CrossRefGoogle Scholar
  14. 14.
    Kleffmann J, Heland J, Kurtenbach R, Lörzer JC, Wiesen P (2002) A new instrument (LOPAP) for the detection of nitrous acid (HONO). Environ Sci Pollut Res 9:48–54Google Scholar
  15. 15.
    Kleffmann J (2007) Daytime sources of nitrous acid (HONO) in the atmospheric boundary layer. Chem Phys Chem 8:1137–1144CrossRefGoogle Scholar
  16. 16.
    Kleffmann K, Wiesen P (2008) Technical note: quantification of interferences of wet chemical HONO LOPAP measurements under simulated polar conditions. Atmos Chem Phys 8:6813–6822CrossRefGoogle Scholar
  17. 17.
    Kleffmann J, Kurtenbach R, Lörzer J, Wiesen P, Kalthoff N, Vogel B, Vogel H (2003) Measured and simulated vertical profiles of nitrous acid, part I: field measurements. Atmos Environ 37:2949–2955CrossRefGoogle Scholar
  18. 18.
    Kleffmann J, Gavriloaiei T, Hofzumahaus A, Holland F, Koppmann R, Rupp L, Schlosser E, Siese M, Wahner A (2005) Daytime formation of nitrous acid: a major source of OH radicals in a forest. Geophys Res Lett 32:L05818CrossRefGoogle Scholar
  19. 19.
    Kleffmann J, Lörzer JC, Wiesen P, Kern C, Trick S, Volkamer R, Rodenas M, Wirtz K (2006) Intercomparison of the DOAS and LOPAP techniques for the detection of nitrous acid (HONO). Atmos Environ 40:3640–3652CrossRefGoogle Scholar
  20. 20.
    Kurtenbach R, Becker KH, Gomes JAG, Kleffmann J, Lörzer JC, Spittler M, Wiesen P, Ackermann R, Geyer A, Platt U (2001) Investigation of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos Environ 35:3385–3394CrossRefGoogle Scholar
  21. 21.
    Lammel G, Cape JN (1996) Nitrous acid and nitrite in the atmosphere. Chem Soc Rev 25:361–369CrossRefGoogle Scholar
  22. 22.
    Li YQ, Schwab JJ, Demerjian KL (2008) Fast time response measurements of gaseous nitrous acid using a tunable diode laser absorption spectrometer: HONO emission source from vehicle exhausts. Geophys Res Lett 35(4):L04803CrossRefGoogle Scholar
  23. 23.
    Li X, Brauers T, Häseler R, Bohn B, Hofzumahaus A, Holland F, Lu KD, Rohrer F, Hu M, Zeng LM, Zhang YH, Garland R, Su H, Nowak A, Takegawa N, Shao M, Wahner A (2011) Exploring the atmospheric chemistry of nitrous acid (HONO) at a rural site in Southern China. Atmos Chem Phys Discuss 11:27591–27635CrossRefGoogle Scholar
  24. 24.
    Liao W, Case AT, Mastromarino J, Tan D, Dibb JE (2006) Observations of HONO by laser-induced fluorescence at the South Pole during ANTCI 2003. Geophys Res Lett 33(9):L09810CrossRefGoogle Scholar
  25. 25.
    Mikuška P, Motyka K, Večeřa Z (2008) Determination of nitrous acid in air using wet effluent diffusion denuder – FIA technique. Talanta 77:635–641CrossRefGoogle Scholar
  26. 26.
    Muñoz A, Vera T, Sidebottom H, Mellouki A, Borrás E, Ródenas M, Clemente E, Vazquez M (2011) Studies on the atmospheric degradation of Chlorpyrifos-methyl. Environ Sci Technol 45:1880–1886CrossRefGoogle Scholar
  27. 27.
    Muñoz A, Ródenas M, Alacreu F, Dorn H-P, Brauers T, Kleffmann J, Mikuška P, Večeřa Z, Häseler R, Ye C, Ruth A, Dixneuf S, Venables D, Darby S, Chen J, Ashu-ayem E, Elshorbany Y, Voigt C, Jessberger P, Kaufmann S, Schäuble D, Mellouki A, Cazaunau M, Grosselin B, Doussin J-F, Colomb A, Michoud V, Miet K, Afif C, Ball S, Daniels M, Goodall I, Tan D, Stickel R, Case A, Rappenglück B, Croxatto G, Dibb J, Scheuer E, Zhou X, Ferm M, Varma R, Pilling M, Clemente E, Porras R, Vera T, Vázquez M, Borrás E, Valero J, Bloss W. Overview of the FIONA campaign, Final Report to the European Commission, 2012 (in preparation)Google Scholar
  28. 28.
    Notholt J, Hjorth J, Raes F, Schrems O (1992) Simultaneous long path field measurements of HNO2, CH2O and aerosol. Ber Bunsenges Phys Chem 3:290–293CrossRefGoogle Scholar
  29. 29.
    Pitts JN Jr, Grosjean D, van Cauwenberghe K, Schmid JP, Fitz DR (1978) Photooxidation of aliphatic amines under simulated atmospheric conditions: formation of nitrosamines, nitramines, amides, and photochemical oxidant. Environ Sci Technol 12:946–953CrossRefGoogle Scholar
  30. 30.
    Platt U, Perner D, Harris GW, Winer AM, Pitts JN (1980) Observations of nitrous acid in an urban atmosphere by differential optical absorption. Nature 285:312–314CrossRefGoogle Scholar
  31. 31.
    Qin M, Xie P, Su H, Gu J, Peng F, Li S, Zeng L, Liu J, Liu W, Zhang Y (2009) An observational study of the HONO–NO2 coupling at an urban site in Guangzhou City, South China. Atmos Environ 43:5731–5742CrossRefGoogle Scholar
  32. 32.
    Reisinger AR (2000) Observation of HNO2 in the polluted winter atmosphere: possible heterogeneous production on aerosols. Atmos Environ 34:3865–3874CrossRefGoogle Scholar
  33. 33.
    Schimang R, Folkers A, Kleffmann J, Kleist E, Miebach M, Wildt J (2006) Uptake of gaseous nitrous acid (HONO) by several plant species. Atmos Environ 40:1324–1335CrossRefGoogle Scholar
  34. 34.
    Stemmler K, Ammann M, Dondors C, Kleffmann J, George C (2006) Photosensitized reduction of nitrogen dioxide on humic acid as a source of nitrous acid. Nature 440:195–198CrossRefGoogle Scholar
  35. 35.
    Stutz J, Oh H-J, Whitlow SI, Anderson C, Dibb JE, Flynn JH, Rappenglück B, Lefer B (2010) Simultaneous DOAS and mist-chamber IC measurements of HONO in Houston, TX. Atmos Environ 44:4090–4098CrossRefGoogle Scholar
  36. 36.
    Varma RM, Venables DS, Ruth AA, Heitmann U, Schlosser E, Dixneuf S (2009) Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction. Appl Opt 48(4):B159–B171CrossRefGoogle Scholar
  37. 37.
    Veitel H (2002) Vertical profiles of NO2 and HONO in the boundary layer. Dissertation, Universität HeidelbergGoogle Scholar
  38. 38.
    Vogel B, Vogel H, Kleffmann J, Kurtenbach R (2003) Measured and simulated vertical profiles of nitrous acid, part II: model simulations and indications for a photolytic source. Atmos Environ 37:2957–2966CrossRefGoogle Scholar
  39. 39.
    Wentzell JJB, Schiller CL, Harris GW (2010) Measurements of HONO during BAQS-Met. Atmos Chem Phys 10:12285–12293Google Scholar
  40. 40.
    Wiessen P (2000) DIFUSO: diesel fuel and soot – fuel formulation and its atmospheric implications. Final report of the EC project, WuppertalGoogle Scholar
  41. 41.
    Winer AM, Biermann HW (1994) Long pathlength differential optical absorption spectroscopy (DOAS) measurements of gaseous HONO, NO2 and HCHO in the California South Coast Air Basin. Res Chem Intermed 20:423–445CrossRefGoogle Scholar
  42. 42.
    Wong KW, Oh H-J, Lefer BL, Rappenglück B, Stutz J (2011) Vertical profiles of nitrous acid in the nocturnal urban atmosphere of Houston, TX. Atmos Chem Phys 11:3595–3609CrossRefGoogle Scholar
  43. 43.
    Zhou X, Civerolo K, Dai H, Huang G, Schwab J, Demerjian K (2002) Summertime nitrous acid chemistry in the atmospheric boundary layer at a rural site in New York State. J Geophys Res 107(D21):4590CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Mila Ródenas
    • 1
    Email author
  • Amalia Muñoz
    • 1
  • Francisco Alacreu
    • 1
  • Theo Brauers
    • 2
  • Hans-Peter Dorn
    • 2
  • Jörg Kleffmann
    • 3
  • William Bloss
    • 4
  1. 1.UMH-Fundación CEAMPaternaSpain
  2. 2.Forschungszentrum JülichJülichGermany
  3. 3.Department of Physical ChemistryUniverity of WuppertalWuppertalGermany
  4. 4.Department of ChemistryUniversity of BirminghamBirminghamUK

Personalised recommendations