Advertisement

Didactic Incidents: A Way to Improve the Professional Development of Mathematics Teachers

  • Gilles AldonEmail author
Chapter
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 2)

Abstract

In this chapter the professional development of teachers is observed through the joint work of researchers and teachers. In the particular context of the European project EdUmatics, which focuses on mathematics education in a computer environment, the collaboration between researchers and teachers has helped both to build innovative situations and also to better understand the difficulties involved in the introduction of technology in classrooms. The theoretical framework of the theory of didactic situations, didactic incidents and documentational genesis allows the construction of analyses in order to better understand the students’ and teacher’s joint action and so to enhance teachers’ professional development. We highlight both the consistency of the framework and the contributions of our findings to the professional development of teachers.

Keywords

Didactics incidents • Documentational genesis • Milieu • Theory of didactic situations 

References

  1. Aldon, G. (2010). Handheld calculators between instrument and document. Dans P. Drijvers & H. -G. Weigand (Éd.), The role of handheld technology in the mathematics classroom (Vol. 42, pp. 733–745). ZDM Mathematics Education, Karlsruhe.Google Scholar
  2. Aldon, G. (2011). Interactions didactiques dans la classe de mathématiques en environnement numérique: construction et mise à l’épreuve d’un cadre d’analyse exploitant la notion d’incident. Doctorat, Université Lyon 1.Google Scholar
  3. Artigue, M. (2007). Conference: Teaching and learning mathematics with digital technologies: The teacher perspective. In International meeting Sharing Inspiration. Brussel.Google Scholar
  4. Artigue, M., Defouad, B., Dupérier, M., Juge, G., & Lagrange, J. -B. (1998). L’intégration de calculatrices complexes à l’enseignement des mathématiques au lycée. Cahier DIDIREM, IREM Paris VII, Spécial no 4.Google Scholar
  5. Arzarello, F., & Robutti, O. (2010). Multimodality in multi-representational environments. Dans P. Drijvers & H. -G. Weigand (Éd.), The role of handheld technology in the mathematics classroom. (Vol. 42, pp. 715–731). ZDM Mathematics Education, Karlsruhe.Google Scholar
  6. Brousseau, G. (1986). Théorisation des phénomènes d’enseignement des Mathématiques. Doctorat, Université Bordeaux 1.Google Scholar
  7. Brousseau, G. (2004). Théorie des situations didactiques. La pensée sauvage éditions.Google Scholar
  8. Chevallard Y. (1985). La transposition didactique – Du savoir savant au savoir enseigné La Pensée sauvage, Grenoble (126 p.). Deuxième édition augmentée 1991.Google Scholar
  9. Clark-Wilson, A. (2010). How does a multi-representational mathematical ICT tool mediate teachers’ mathematical and pedagogical knowledge concerning variance and invariance? Ph.D., Institute of Education, University of London.Google Scholar
  10. Drijvers, P., & Trouche, L. (2008). From artifacts to instruments: A theoretical framework behind the orchestra metaphor. Dans G. W. Blume & M. K. Heid (Éd.), Research on technology and the teaching and learning of mathematics (Vol. 2, pp. 363–392). Charlotte: IAP (Information Age Publishing).Google Scholar
  11. Gueudet, G., & Trouche, L. (2009). Towards new documentation systems for mathematics teachers? Education Studies in Mathematics, 71, 199–218.CrossRefGoogle Scholar
  12. Lagrange, J.-B., & Degleodu, N. C. (2009). Usages de la technologie dans des conditions ordinaires. le cas de la géométrie dynamique au collège. Recherches en Didactique des Mathématiques, 29(2), 189–226.Google Scholar
  13. Margolinas, C. (2004). Points de vue de l’élève et du professeur Essai de développement de la théorie des situations didactiques. Habilitation à Diriger des Recherches, Université de Provence.Google Scholar
  14. Pédauque, R. T. (2006). Le document à la lumière du numérique. Caen: C & F éditions.Google Scholar
  15. Rabardel, P. (1995). L’homme et les outils contemporains. A. Colin, ParisGoogle Scholar
  16. Rabardel, P., & Pastré, P. (2005). Modèles du sujet pour la conception. Octares, Toulouse.Google Scholar
  17. Rodd, M., & Monaghan, J. (2002). Graphic calculator use in Leeds schools: Fragments of practice. Journal of Information Technology for Teacher Education, 11(1), 93–108.CrossRefGoogle Scholar
  18. Sabra, H. (2011, en cours). Contribution à l’étude du monde et du travail documentaire des enseignants de mathématiques: les incidents comme révélateurs des rapports entre individuel et collectif. Université Lyon 1.Google Scholar
  19. Sensevy, G. (2007). Des catégories pour décrire et comprendre l’action didactique. Dans G. Sensevy & A. Mercier (Éd.), (pp. 13–49). Presses Universitaires de Rennes.Google Scholar
  20. Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding students’ command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9, 281–307.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.IFÉ, École Normale Supérieure de LyonLyonFrance

Personalised recommendations