Advertisement

Teachers and Technologies: Shared Constraints, Common Responses

  • Maha Abboud-BlanchardEmail author
Chapter
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 2)

Abstract

This chapter presents a synthesis of a set of studies focusing on teachers’ technology-based activity at the classroom level. Each of the studies is contextualised, singular and deals with individual teachers. Cross-analysing the findings of these separate situations aims to identify common characteristics in terms of common responses to shared constraints (in the French context) related to the use of technology by ordinary mathematics teachers. The synthesis is developed with the aim of analysing regularities in the practices of ordinary teachers integrating technologies into their teaching. These regularities are structured along three issues: How to simultaneously teach mathematics and use technology in class? (cognitive axis); How to teach mathematics in new teaching environments? (pragmatic axis); How to manage the time of teaching and learning when using technology? (temporal axis).

Keywords

Technology integration Teachers’ practices Mathematics teaching Teaching environments Didactical approach Professional constraints 

References

  1. Abboud-Blanchard, M. (2009). How mathematics teachers handle lessons in technology environments. In W. Carl (Ed.), Nordic research on mathematics education (pp. 237–244). Denmark: Sense Publishers.CrossRefGoogle Scholar
  2. Abboud-Blanchard, M. (2011). Mathematics and technology: Exploring teacher educators’ professional development. Proceedings of the 10th international conference on technology in mathematics teaching (pp. 48–56). UK: University of Portsmouth & University of Chichester.Google Scholar
  3. Abboud-Blanchard, M., & Lagrange, J. B. (2006). Uses of ICT by pre-service teachers: Towards a professional instrumentation? International Journal for Technology in Mathematics Education, 13.4, 183–191.Google Scholar
  4. Abboud-Blanchard, M., & Paries, M. (2008). Etude de l’activité de l’enseignant dans une séance de géométrie dynamique au collège. In F. Vandebrouck (Ed.), La classe de mathématiques: activités des élèves et pratiques des enseignants (pp. 261–292). Toulouse: Eds Octarès.Google Scholar
  5. Abboud-Blanchard, M., & Vandebrouck, F. (2012). Analysing teachers’ practices in technology environments from an activity theoretical approach. International Journal for Technology in Mathematics Education, 19.4, 159–164.Google Scholar
  6. Abboud-Blanchard, M., Cazes, C., & Vandebrouck, F. (2007). Teachers’ activity in exercices-based lessons. Some case studies. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the fifth congress of the European society for research in mathematics education (pp. 1827–1836). Larnaca.Google Scholar
  7. Abboud-Blanchard, M., Fallot, J.-P., Lenfant, A., & Parzysz, B. (2008). Comment les enseignants en formation initiale utilisent les technologies informatiques dans leurs classes. Teaching Mathematics and Computer Science Journal, 6.1, 187–208.CrossRefGoogle Scholar
  8. Abboud-Blanchard, M., Cazes, C., & Vandebrouck, F. (2009). Activités d’enseignants de mathématiques intégrant des bases d’exercices en ligne. Quadrante, 18(1/2), 147–160.Google Scholar
  9. Abboud-Blanchard, M., Cazes, C., Chenevotot-Quentin, F., Grugeon, B., Haspekian, M., Lagrange, J. B., & Vandebrouck, F. (2012). Les technologies numériques en didactique des mathématiques. In M. L. Elalouf & A. Robet (Eds.), Les didactiques en questions. Etat des lieux et perspectives pour la recherche et la formation (pp. 232–256). Bruxelles: Eds De Boeck.Google Scholar
  10. Artigue, M. (1997). Le logiciel DERIVE comme révélateur de phénomènes didactiques liés à l’utilisation d’environnements informatiques pour l’apprentissage. Educational Studies in Mathematics, 33, 133–169.CrossRefGoogle Scholar
  11. Artigue & Groupe TICE IREM Paris 7. (2008). L’utilisation de ressources en ligne pour l’enseignement des mathématiques au lycée: du suivi d’une expérimentation régionale à un objet de recherche. In N. Bednarz & C. Mary (Eds.), Actes du Colloque EMF 2006, L’enseignement des mathématiques face aux défis de l’école et des communautés (pp. 1–11). Sherbrooke: Université de Sherbrooke.Google Scholar
  12. Chevallard, Y., & Mercier, A. (1987). Sur la formation historique du temps didactique (Vol. 8). Marseille: Publication de l’IREM d’Aix-Marseille.Google Scholar
  13. Chopin, M. P. (2005). Le Temps didactique en théorie anthropologique du didactique. Quelques remarques méthodologiques à propos des “moments de l’Étude”. IerCongrès International sur la Théorie Anthropologique du Didactique :Société, École et Mathématiques : Apports de la TAD”. Baeza.Google Scholar
  14. Drijvers, P. (2011). From ’work-and-walk-by’ to ’sherpa-at-work’. Mathematics Teaching, 222, 22–26.Google Scholar
  15. Drijvers, P., Doorman, M., Boon, P., Reed, H., & Gravemeijer, K. (2010). The teacher and the tool: Instrumental orchestrations in the technology-rich mathematics classroom. Educational Studies in Mathematics, 75, 213–234.CrossRefGoogle Scholar
  16. Hoyles, C., & Lagrange, J. B. (Eds.). (2010). Digital technologies and math education. Rethinking the terrain. The 17th ICMI study. New York: Springer.Google Scholar
  17. Kendal, M., & Stacey, K. (2002). Teachers in transition: Moving towards CSA-supported classrooms. ZDM, 34(5), 196–203.Google Scholar
  18. Laborde, C. (2001). The use of new technologies as a vehicle for restrucuring. In F.-L. Lin & T. J. Cooney (Eds.), Making sense of mathematics teacher education (pp. 87–109). Netherlands: Kluwer.CrossRefGoogle Scholar
  19. Lagrange, J. B., & Erdogan, E. (2009). Teacher’s emergent goals in spreadsheet based lessons: Analysing the complexity of technology integration. Educational Studies in Mathematics, 71(1), 65–84.CrossRefGoogle Scholar
  20. Lagrange, J. -B., & Monaghan, J. (2009). On the adoption of a model to interpret teachers’ use of technology in mathematics lessons. Proceedings of the sixth conference of the European society for research in mathematics education (pp. 1605–1614). France: University of Lyon, INRP.Google Scholar
  21. Lagrange, J. B., Artigue, M., Laborde, C., & Trouche, L. (2003). Technology and math education: a multidimensional overview of recent research and innovation. In J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & F. Leung (Eds.), Second international handbook of mathematics education (pp. 237–270). Dordrecht: Kluwer. Part 1.CrossRefGoogle Scholar
  22. Lenfant, A. (2002). De la position d’étudiant à la position d’enseignant : l’évolution du rapport à l’algèbre de professeurs stagiaires. Thèse de doctorat. Université Paris 7.Google Scholar
  23. Leontiev, A. N. (1978). Activity, consciousness and personality. Englewood Cliffs: Prentice Hall.Google Scholar
  24. Leplat, J. (1997). Regards sur l’activité en situation de travail. Paris: PUF.Google Scholar
  25. Monaghan, J. (2004). Teachers’ activities in technology-based mathematics lessons. International Journal of Computers for Mathematical Learning, 9(3), 327–357.CrossRefGoogle Scholar
  26. Robert, A. (2008). La double approche didactique et ergonomique pour l’analyse des pratiques d’enseignants de mathématiques. In F. Vandebrouck (Ed.), La classe de mathématiques : activités des élèves et pratiques des enseignants (pp. 59–68). Toulouse: Eds Octarès.Google Scholar
  27. Robert, A., & Rogalski, J. (2002). Le système complexe et coherent des pratiques des enseignants de mathématiques: une double approche. Revue canadienne de l’enseignement des sciences, des mathématiques et des technologies, 2(4), 505–528.Google Scholar
  28. Robert, A., & Rogalski, J. (2005). A cross-analysis of the mathematics teacher’s activity. An example in a French 10th grade class. Educational Studies in Mathematics, 59, 269–298.CrossRefGoogle Scholar
  29. Rogalski, J. (2004). La didactique professionnelle: une alternative aux approches de “cognition située” et “cognitiviste” en psychologie des acquisitions. @ctivités, 1(2), 103–120. http://www.activites.org/v1n2/Rogalski.pdf
  30. Rogalski, J. (2008). Le cadre général de la théorie de l’activité. Une perspective de psychologie cognitive. In F. Vandebrouck (Ed.), La classe de mathématiques : activités des élèves et pratiques des enseignants (pp. 23–30). Toulouse: Eds Octarès.Google Scholar
  31. Ruthven, K. (2007). Teachers, technologies and the structures of schooling. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the fifth congress of the European society for research in mathematics education (pp. 52–67). Larnaca.Google Scholar
  32. Ruthven, K. (2009). Towards a naturalistic conceptualisation of technology integration in classroom practice: The example of school mathematics. Education et Didactique, 3(1), 131–149.CrossRefGoogle Scholar
  33. Ruthven, K. (2010). Constituer les outils et les supports numériques en ressources pour la classe. In G. Gueud & L. Trouche (Eds.), Ressources vives (pp. 183–199). France: Presses Universitaires de Rennes.Google Scholar
  34. Ruthven, K., & Hennessy, S. (2002). A practitioner model of the use of computer-based tools and resources to support mathematics teaching and learning. Educational Studies in Mathematics, 49(1), 47–88.CrossRefGoogle Scholar
  35. Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding student’s command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.CrossRefGoogle Scholar
  36. Van Der Maren, J. M. (2003). En quête d’une recherche pratique. Sciences Humaines, 142, 42–44.Google Scholar
  37. Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of thought in relation to instrumented activity. European Journal of Psychology of Education, 10(1), 77–101.CrossRefGoogle Scholar
  38. Vygotsky, L. S. (1986). Thought and language. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.LDAR, University of Paris DiderotParisFrance

Personalised recommendations