Teachers’ Instrumental Geneses When Integrating Spreadsheet Software

  • Mariam HaspekianEmail author
Part of the Mathematics Education in the Digital Era book series (MEDE, volume 2)


The spreadsheet is not a priori a didactical tool for mathematics education. It may progressively become such an instrument through the process of professional geneses on the part of teachers. This chapter describes the beginning of such a genesis, and presents some results concerning teachers’ professional development with ICT by examining the outcomes of two different sets of data. Theoretical notions, such as instrumental distance and double instrumental genesis supported the analysis of data leading to a comparison of a teacher integrating spreadsheets, for the first time in her practices, with the practices of teachers who are more expert with spreadsheets. The similarities found in the ways they use the tool leads to some hypotheses on the importance of these common elements as key issues in teachers’ ICT practices.


Mathematics teaching and learning Teaching practices ICT integration Professional learning of mathematics teachers Technology-mediated classroom practices Spreadsheet Professional/personal instrument Double instrumental geneses (professional/personal) Instrumental distance Novice/expert teacher 



I would like to thank Rebecca Freund, and the anonymous second reviewer, who very carefully reviewed the English of the text.

Supplementary material


  1. Ainley, J. (1999). Doing algebra-type stuff: Emergent algebra in the primary school. In O. Zaslavsky (Ed.), Proceedings of the twenty third annual conference of the International Group for the Psychology of Mathematics, Haifa, Israel.Google Scholar
  2. Ainley, J., Bills, L., & Wilson, K. (2003). Designing tasks for purposeful algebra. Proceedings of the third conference of the European Society for Research in Mathematics Education, Bellaria, Italy.Google Scholar
  3. Artigue, M. (2002). Learning mathematics in a CAS environment: The genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.CrossRefGoogle Scholar
  4. Arzarello, F., Bazzini, L., & Chiappini, G. (2001). A model for analysing algebraic processes of thinking. In R. Sutherland, T. Assude, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (Vol. 22, pp. 61–81). Dordrecht: Kluwer.CrossRefGoogle Scholar
  5. Baker, J., & Sugden, S. (2003). Spreadsheets in Education –The First 25 Years. Spreadsheets in Education (eJSiE): Vol. 1–1, Article 2.Google Scholar
  6. Balacheff, N. (1994). La transposition informatique. Note sur un nouveau problème pour la didactique. In M. Artigue (Ed.), Vingt ans de Didactique des Mathématiques en France (pp. 364–370). Grenoble: La pensée sauvage.Google Scholar
  7. Balanskat, B., Blamire, R., & Kefala, S. (2006). The ICT impact report. A review of studies of ICT impact on schools in Europe. Report written by European Schoolnet in the framework of the European Commission’s ICT cluster.
  8. Bruillard, E. & Blondel, F.-M. (2007). Histoire de la construction de l’objet tableur, document de pré-publication, version 1 du 22 octobre 2007.
  9. Bruillard, E., Blondel, F.-M., & Tort, F. (2008). DidaTab project main results: Implications for education and teacher development. In K. McFerrin, R. Weber, R. Carlsen, & D. A. Willis (Eds.), Proceedings of the International Conference, SITE 2008 (pp. 2014–2021). Chesapeake, USA: AACE.Google Scholar
  10. Capponi, B. (2000). Tableur, arithmétique et algèbre. L’algèbre au lycée et au collège, Actes des journées de formation de formateurs 1999 (pp. 58–66). IREM de Montpellier.Google Scholar
  11. Capponi, B., & Balacheff, N. (1989). Tableur et Calcul Algébrique. Educational Studies in Mathematics, 20, 179–210.Google Scholar
  12. Chevallard, Y. (1992). Intégration et viabilité des objets informatiques dans l’enseignement des mathématiques. In B. Cornu (Ed.), L’ordinateur pour enseigner les mathématiques (pp. 183–203). Paris: Presses Universitaires de France.Google Scholar
  13. Chevallard, Y. (2007). Readjusting didactics to a changing epistemology. European Educational Research Journal, 6(2), 131–134.CrossRefGoogle Scholar
  14. Clark-Wilson, A. (2010a). Connecting mathematics in a connected classroom: Teachers emergent practices within a collaborative learning environment. British Congress on Mathematics Education, BSRLM Proceedings, 30(1). University of Manchester.Google Scholar
  15. Clark-Wilson, A. (2010b). How does a multi-representational mathematical ICT tool mediate teachers’ mathematical and pedagogical knowledge concerning variance and invariance? Ph.D. thesis, Institute of Education, University of London.Google Scholar
  16. Coulange, L. (1998). Les problèmes “concrets à mettre en équation” dans l’enseignement. Petit x n 47. 33–58.Google Scholar
  17. Dettori, G., Garuti, R., Lemut, E., & Netchitailova, L. (1995). An analysis of the relationship between spreadsheet and algebra. In L. Burton & B. Jaworski (Eds.), Technology in mathematics teaching: A bridge between teaching and learning (pp. 261–274). Bromley: Chartwell-Bratt.Google Scholar
  18. Dettori, G., Garuti, R., & Lemut, E. (2001). From arithmetic to algebraic thinking by using a spreadsheet. In R. Sutherland, T. Rojano, A. Bell, & R. Lins (Eds.), Perspectives on school algebra (pp. 191–207). Dordrecht: Kluwer.Google Scholar
  19. Drijvers, P. (2000). Students encountering obstacles using CAS. International Journal of Computers for Mathematical Learning, 5(3), 189–209.CrossRefGoogle Scholar
  20. Eurydice. (2004). Keydata on information and communication technology in schools in 2004. [On line]
  21. Eurydice. (2005, October 2005). How boys and girls in Europe are finding their way with information and communication technology? Eurydice in brief. Brussels. [On line]
  22. Guin, D., & Trouche, L. (1999). The complex process of converting tools into mathematical instruments: The case of calculators. International Journal for Computer Algebra in Mathematics Education, 3(3), 195–227.Google Scholar
  23. Guin, D., Ruthven, K., & Trouche, L. (2004). The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument. New York: Springer.Google Scholar
  24. Haspekian, M. (2005a). Intégration d’outils informatiques dans l’enseignement des mathématiques, Etude du cas des tableurs. Ph.D. thesis, University Paris 7. Scholar
  25. Haspekian, M. (2005b). An “Instrumental Approach” to study the integration of a computer tool into mathematics teaching: The case of spreadsheets. International Journal of Computers for Mathematical Learning, 10(2), 109–141.CrossRefGoogle Scholar
  26. Haspekian, M. (2006). Evolution des usages du tableur. In Rapport intermédiaire de l’ACI-EF Genèses d’usages professionnels des technologies chez les enseignants.
  27. Haspekian, M. (2011). The co-construction of a mathematical and a didactical instrument. In M. Pytlak, E. Swoboda & T. Rowland (Eds.), Proceedings of the seventh Congress of the European Society for Research in Mathematics Education. CERME 7, Rzesvow.Google Scholar
  28. Laborde, C. (2001). Integration of technology in the design of geometry tasks with Cabri geometry. International Journal of Computers for Mathematical Learning, 6(3), 283–317.CrossRefGoogle Scholar
  29. Laborde, C., & Capponi, B. (1994). Cabri-géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique, Recherche en didactique des mathématiques, 14(1-2).Google Scholar
  30. Lagrange, J. B. (1999). Complex calculators in the classroom: Theoretical and practical reflections on teaching pre-calculus. International Journal of Computers for Mathematical Learning, 4(1), 51–81.Google Scholar
  31. Lagrange, J. B. (2000). Lintegration d’instruments informatiques dans l’enseignement : une approche par les techniques. Educational Studies in Mathematics, 43, 1–30.CrossRefGoogle Scholar
  32. Monaghan, J. (2004). Teacher’s activities in technology-based mathematics lessons. International Journal of Computers for Mathematics Learning, 9, 327–357.CrossRefGoogle Scholar
  33. Norton, S., McRobbier, C. J., & Cooper, T. J. (2000). Exploring secondary mathematics teachers’ reasons for not using computers in their teaching: Five case studies. Journal of Research on Computing in Education, 33(1).Google Scholar
  34. Parzysz, B. (1988). Voir et savoir – la représentation du “perçu” et du “su” dans les dessins de la géométrie de l'espace. Bulletin de l'APMEP, 364.Google Scholar
  35. Pelgrum, W. J., & Anderson, R. E. (Eds.). (2001). ICT and the emerging paradigm for life-long learning. Amsterdam: IEA.Google Scholar
  36. Rabardel, P. (1993). Représentations pour l’action dans les situations d’activité instrumentée. In A. Weill-Fassina, P. Rabardel, & D. Dubois (Eds.), Représentations pour l’action. Octares: Toulouse.Google Scholar
  37. Rabardel, P. (2002). People and technology -a cognitive approach to contemporary instruments.
  38. Robert, A., & Rogalski, J. (2002). Le système complexe et cohérent des pratiques des enseignants de mathématiques: une double approche. Revue canadienne de l’enseignement des sciences, des mathématiques et des technologies, 2, 505–528.Google Scholar
  39. Rojano, T., & Sutherland R. (1997). Pupils’ strategies and the Cartesian method for solving problems: The role of spreadsheets. Proceedings of the 21st international PME conference (Vol. 4, pp. 72–79).Google Scholar
  40. Ruthven, K. (2007). Teachers, technologies and the structures of schooling. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the fith congress of the European Society for Research in Mathematics Education (pp. 52–68). Larnaca.Google Scholar
  41. Stacey, K., Chick, H., & Kendal, M. (2004). The future of the teaching and learning of algebra (The 12th ICMI study). Kluwer, Dordrecht.Google Scholar
  42. Trouche, L. (2004). Managing complexity of human/machine interactions in computerized learning environments: Guiding student’s command process through instrumental orchestrations. International Journal of Computers for Mathematical Learning, 9(3), 281–307.CrossRefGoogle Scholar
  43. Trouche, L. (2005). Instrumental genesis, individual and social aspects. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: Turning a computational device into a mathematical instrument (pp. 97–230). New York: Springer.Google Scholar
  44. Vérillon, P., & Rabardel, P. (1995). Cognition and artifacts: A contribution to the study of though in relation to instrumented activity. European Journal of Education, X(1), 77–101.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.EDAUniversity Paris DescartesParisFrance

Personalised recommendations