Advertisement

GIS for the Determination of Bioenergy Potential in the Centre Region of Portugal

  • Tanya C. J. Esteves
  • Pedro Cabral
  • José Carlos Teixeira
  • António J. D. Ferreira

Abstract

Every activity performed by mankind is directly or indirectly dependant on the use of energy. Fossil fuels are the main source used nowadays, a presumably limited energy source that may end in the near future (Boyle, 2004). World total annual consumption of all forms of primary energy increased drastically, and in the year 2006 it reached an estimated 10,800 Mtoe (million tons of oil equivalent) (U.S. Energy Information Administration [USEIA], 2009). The annual average energy consumption per person of the world population in 2006 was about 1.65 toe (ton of oil equivalent) (Population Reference Bureau, 2010). In 2010, the consumption of this energy may reach 12,800 Mtoe (USEIA, 2009) and in 2050 it is expected to achieve a range of 14,300 Mtoe to 23,900 Mtoe (International Energy Agency for Bioenergy [IEAB], 2009). We can also assume that it might possibly never end. The current energy crisis is affecting great part of the world population (U.S. Department of Energy, 2009).

Keywords

Municipal Solid Waste Anaerobic Digestion Shuttle Radar Topography Mission Bioenergy Production Ordered Weighted Average 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agencia para o Investimento e Comércio Externo de Portugal (2008). Portugal - Perfil país. AICEP Portugal Global, Lisboa.Google Scholar
  2. Agencia Portuguesa do Ambiente (2008). Relatório do Estado do Ambiente 2007. Agencia Portuguesa do Ambiente, Amadora.Google Scholar
  3. Agencia Portuguesa do Ambiente (2009). Relatório do Estado do Ambiente 2009. Agencia Portuguesa do Ambiente, Amadora:.Google Scholar
  4. Associa^ao das Energias Renováveis (2010). Roteiro Nacional das Energias Renováveis - Aplicado da Directiva 2009/28/CE. Associafao de Energias Renováveis, Lisboa.Google Scholar
  5. Boyle, G. (2004). Renewable energy: power for a sustainable future (2 ed.). Oxford University Press, United Kingdom.Google Scholar
  6. Cantrell, K.B., Ducey, T., Ro, K.S. and Hunt, P.G. (2008). Livestock waste-to-bioenergy generation opportunities. Bioresource Technology, 99, 7941-7953.CrossRefGoogle Scholar
  7. Consultative Group on International Agricultural Research (2008). CGIAR - Consortium for Spatial Information. Retrieved August 19, 2008, from http:// srtm.csi.cgiar.org/Google Scholar
  8. Direcfao Geral de Energia e Geologia (2005). Direcfao Geral de Energia e Geologia Homepage. Retrieved November 5, 2010, from http://www.dgge.pt/
  9. Environmental Systems Research Institute (2010). ArcGis 9.3 Desktop Help. ESRI, USA.Google Scholar
  10. European Commission (2007). Evaluation report on the implementation in Portugal of the European sustainable development strategy - June (No. Tech. Rep. SG/743/07- EN). European Commission, Brussels.Google Scholar
  11. European Environment Agency (2007). Estimating the environmentally compatible bioenergy potential from agriculture (No. Tech. Rep. 12/2007). European Environment Agency, Copenhagen.Google Scholar
  12. European Parliament and of the Council (2007). Directive 2001/77/EC. Promotion of electricity produced from renewable energy sources in the internal electricity market. Official Journal of the European Communities, Brussels.Google Scholar
  13. European Parliament and of the Council (2009). Directive 2009/28/CE. Promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Official Journal of the European Communities, Brussels.Google Scholar
  14. Gómez, A., Zubizarreta, J., Rodrigues, M., Dopazo, C. and Fueyo, N. (2010). Potential and cost of electricity generation from human and animal waste in Spain. Renewable Energy, 35, 495-505.CrossRefGoogle Scholar
  15. Hansen, H.S. (2005). GIS-based Multi-Criteria Analysis of Wind Farm Development. Paper presented at the ScanGis 2005 - 10th Scandinavian Research Conference on Geographical Information Science, Stockholm, Sweden.Google Scholar
  16. Instituto Geográfico do Exército (2010). Instituto Geográfico do Exército. Retrieved October 7, 2010, from http://www.igeoe.pt
  17. Instituto Geográfico Portugués (2009). Instituto Geográfico Portugués. Grupo de Detecçâo Remota. Retrieved September 12, 2009, from http://www.igeo.pt/gdr/
  18. Instituto Nacional de Estatística (2009). Estatísticas Agrícolas 2008. Instituto Nacional de Estatística. I.P., Lisboa.Google Scholar
  19. International Energy Agency for Bioenergy (2009). Bioenergy - A sustainable and reliable energy Source (No. Main Report). s.l.: IEA Bioenergy.Google Scholar
  20. Jiang, H. and Eastman, J.R. (2000). Application of fuzzy measures in multi-criteria evaluation in GIS. International Journal of Geographical Information Science, 14(2), 173-184.CrossRefGoogle Scholar
  21. Malczewski, J. (1999). GIS and multicriteria decision analysis. John Wiley and Sons, Inc., USA.Google Scholar
  22. Malczewski, J. (2004). GIS-based land-use suitability analysis: A critical overview. Progress in Planning, 62, 3-65.CrossRefGoogle Scholar
  23. Malczewski, J. (2006a). GIS-based multicriteria decision analysis: A survey of the literature. International Journal of Geographical Information Science, 20(7), 703726.CrossRefGoogle Scholar
  24. Malczewski, J. (2006b). Integrating multicriteria analysis and geographic information systems: the ordered weighted averaging (OWA) approach. International Journal of Environmental Technology and Management, 6(1/2), 7-19.CrossRefGoogle Scholar
  25. Masera, O., Ghilardi, A., Drigo, R. and Trossero, M.A. (2006). WISDOM: A GIS- based supply demand mapping tool for woodfuel management. Biomass and Bioenergy, 30, 618-637.CrossRefGoogle Scholar
  26. Ministério do Ambiente e Ordenamento do Territòrio. (2007). Plano Estratégico para os Resíduos Sólidos Urbanos 2007-2016. Ministério do Ambiente, do Ordenamento do Territòrio e do Desenvolvimento Regional, Lisboa.Google Scholar
  27. Population Reference Bureau (2010). 2006 World Population Data Sheet. Population Reference Bureau, Washington.Google Scholar
  28. Ramachandra, T.V. (2008). Geographical information system approach for regional biogas potential assessment. Research Journal of Environmental Sciences, 3(2), 170-184.Google Scholar
  29. Richardson, J. and Verwijst, T. (2005). Sustainable bioenergy production systems: Environmental, operational and social implications. Biomass and Bioenergy, 28 (Preface), 95-96.Google Scholar
  30. U.S. Department of Energy (2009). Department of Energy. Retrieved June 23, 2009, from http://tonto.eia.doe.gov/oog/info/twip/twipcrvwall.xls#'Data 2'!A1
  31. U.S. Energy Information Administration (2009). World Total Primary Energy Consumption by Region. Reference Case, 1990-2030. Energy Information Administration/International Energy Outlook. Retrieved July 27, 2010, from http://www.eia.doe.gov/oiaf/ieo/pdf/ieoreftab_1.pdfGoogle Scholar
  32. World Commission on Environment and Development (1990). Our common future. Oxford University Press, USA.Google Scholar

Copyright information

© Capital Publishing Company 2011

Authors and Affiliations

  • Tanya C. J. Esteves
    • 1
  • Pedro Cabral
    • 2
  • José Carlos Teixeira
    • 3
  • António J. D. Ferreira
    • 1
  1. 1.Centro de Estudos de Recursos Naturais, Ambiente e Sociedade Escola Superior Agrária de Coimbra – Instituto Politècnico de Coimbra BencantaCoimbraPortugal
  2. 2.Instituto Superior de Estatística e Gestão de Informação – Universidade Nova de Lisboa, Campus de CampolideLisboaPortugal
  3. 3.Departamento de Engenharia Mecânica – Universidade do Minho Campus de AzurémGuimãraesPortugal

Personalised recommendations