Advertisement

Quark-Gluon Plasma

  • Rajiv V. Gavai
Part of the Texts and Readings in Physical Sciences book series

Abstract

Lattice QCD predicts a phase transition to a hitherto unseen state of matter called quark-gluon plasma (QGP). A few microseconds after the big bang, our universe was most likely filled with QGP. Amazingly, attempts to produce QGP in the laboratory are currently going on in the relativistic heavy ion collider (RHIC) in the USA. In the following, we introduce the concept of QGP and then move on to its description in terms of the underlying field theory, namely quantum chromodynamics (QCD). Lattice QCD has yielded the most reliable predictions for QGP. After introducing the basics, the elementary aspects of heavy ion physics is covered with some examples of signatures of QGP.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

[1] Quark Gluon Plasma

  1. [1a]
    J. Cleymans, R.V. Gavai, and E. Suhonen, Phys. Rept. 130, 217 (1986).ADSCrossRefGoogle Scholar
  2. [1b]
    B. Muller, Physics of the Quark-Gluon Plasma, Springer-Verlag (1985).Google Scholar
  3. [1c]
    R.C. Hwa, Quark Gluon Plasma, World Scientific (1990).CrossRefzbMATHGoogle Scholar
  4. [1d]
    R.C. Hwa, Quark Gluon Plasma 2, World Scientific (1995).CrossRefzbMATHGoogle Scholar

[2] Finite Temperature Field Theory

  1. [2a]
    M. Le Bellac, Thermal Field Theory, Cambridge University Press (1996).CrossRefGoogle Scholar
  2. [2b]
    J.I. Kapusta, Finite-Temperature Field Theory, Cambridge University Press (1989).zbMATHGoogle Scholar

[3] Lattice Field Theory

  1. [3a]
    M. Creutz, Quarks, Gluons and Lattices, Cambridge University Press (1985).Google Scholar
  2. [3b]
    H.J. Rothe, Lattice Gauge Theories: An Introduction, World Scientific (1998).zbMATHGoogle Scholar
  3. [3c]
    I. Montvay and G. Munster, Quantum Fields on a Lattice, Cambridge University Press (1997).Google Scholar
  4. [3d]
    M. Creutz, Quantum Fields on the Computer, World Scientific (1992).CrossRefzbMATHGoogle Scholar

[4] Grassmann Calculus

  1. [4a]
    F.A. Berezin, The Method of Second Quantization, Academic Press (1966).zbMATHGoogle Scholar

[5] Perturbation Theory at High Temperature

  1. [5a]
    P. Arnold and C.-x. Zhai, Phys. Rev. D51, 1906 (1995); e-Print Archive: hep-ph/9410360.ADSGoogle Scholar
  2. [5b]
    C.-x. Zhai and B. Kastening, Phys. Rev. D52, 7232 (1995); e-Print Archive: hep-ph/9507380.ADSGoogle Scholar

[6] Free Energy and Perturbation Theory

  1. [6a]
    E. Braaten and A. Nieto, Phys. Rev. D53, 3421 (1996); e-Print Archive: hep-ph/9510408.ADSGoogle Scholar

[7] Advanced Reading Material

  1. Proceedings of International Symposium on Lattice Field Theory.Google Scholar
  2. [7a]
    Lattice 2000: Nucl. Phys. Proc. Suppl. 94 (2001).Google Scholar
  3. [7b]
    Lattice 2001: Nucl. Phys. Proc. Suppl. 106 (2002).Google Scholar
  4. [7c]
    Lattice 2002: Nucl. Phys. Proc. Suppl. 119 (2003).Google Scholar
  5. [7d]
    Lattice 2003: To appear in Nucl. Phys. Proc. Suppl. (2004).Google Scholar
  6. Proceedings of the International Conferences on Ultra-relativistic Nucleus-Nucleus Collisions.Google Scholar
  7. [7e]
    Quark Matter 1999: Nucl. Phys. A661 (1999).Google Scholar
  8. [7f]
    Quark Matter 2001: Nucl. Phys. A698 (2002).Google Scholar
  9. [7g]
    Quark Matter 2002: Nucl. Phys. A715 (2003).Google Scholar
  10. [7h]
    Quark Matter 2004: To appear in J. Phys. G. Google Scholar

Copyright information

© Hindustan Book Agency 2005

Authors and Affiliations

  • Rajiv V. Gavai

There are no affiliations available

Personalised recommendations