Sialogenins and Immunomodulators Derived from Blood Feeding Parasites

  • Anderson Sá-NunesEmail author
  • Carlo José Freire de Oliveira


Several molecules and cell types constitute the innate or “natural” and the acquired or “adaptive” arms of the immune response. The innate arm represents the first line of host defense while the acquired arm develops upon recurring contact with the parasites and promotes long-lasting responses and immunological memory. When attempting to intake a blood meal, hematophagous parasites may face the immune system of their vertebrate hosts. In order to counteract the host immune protective barriers and facilitate their feeding, these organisms developed, throughout the evolutionary process, a salivary cocktail with an arsenal of molecules containing several immunomodulatory properties. Advances in biochemical techniques and molecular biology tools made the genome sequencing and the development of sialome catalogs possible, allowing the identification and study of each salivary component. In consequence, an increasing number of immunologists and immunoparasitologists are now focusing their efforts on unveiling the biological role of these molecules and contributing to the creation of a database representing the salivary “immunome” of blood feeding organisms. Thus, the present chapter illustrates the current knowledge of proteins, here termed “sialogenins” (from the Greek sialo: saliva; gen: origin; in: protein), and nonprotein constituents present in the salivary secretion employed by bloodsucking ectoparasites to circumvent such effector mechanisms of host immunity. Also presented is an updated list of complement system and chemokine inhibitors, histamine- and immunoglobulin-binding proteins, and modulators of host cell activation and function described in saliva or salivary gland extract of hematophagous ectoparasites.


Salivary Gland Migration Inhibitory Factor Salivary Gland Extract Tick Saliva Human Migration Inhibitory Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Intramural Research Program of the Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health and by grants from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP). We thank NIAID intramural editor Brenda Rae Marshall for assistance.


  1. Ackerman, S., Clare, F.B., McGill, T.W., Sonenshine, D.E., 1981. Passage of host serum components, including antibody, across the digestive tract of Dermacentor variabilis (Say). J. Parasitol. 67, 737–740.PubMedCrossRefGoogle Scholar
  2. Aljamali, M., Bowman, A.S., Dillwith, J.W., Tucker, J.S., Yates, G.W., Essenberg, R.C., Sauer, J.R., 2002. Identity and synthesis of prostaglandins in the lone star tick, Amblyomma americanum (L.), as assessed by radio-immunoassay and gas chromatography/mass spectrometry. Insect Biochem. Mol. Biol. 32, 331–341.PubMedCrossRefGoogle Scholar
  3. Andersen, J.F., Ding, X.D., Balfour, C., Shokhireva, T.K., Champagne, D.E., Walker, F.A., Montfort, W.R., 2000. Kinetics and equilibria in ligand binding by nitrophorins 1–4: evidence for stabilization of a nitric oxide-ferriheme complex through a ligand-induced conformational trap. Biochemistry 39, 10118–10131.PubMedCrossRefGoogle Scholar
  4. Andersen, J.F., Hinnebusch, B.J., Lucas, D.A., Conrads, T.P., Veenstra, T.D., Pham, V.M., Ribeiro, J.M., 2007. An insight into the sialome of the oriental rat flea, Xenopsylla cheopis (Rots). BMC Genomics 8, 102.PubMedCrossRefGoogle Scholar
  5. Andersen, J.F., Pham, V.M., Meng, Z., Champagne, D.E., Ribeiro, J.M., 2009. Insight into the sialome of the Black Fly, Simulium vittatum. J. Proteome Res. 8, 1474–1488.PubMedCrossRefGoogle Scholar
  6. Anderson, J.M., Oliveira, F., Kamhawi, S., Mans, B.J., Reynoso, D., Seitz, A.E., Lawyer, P., Garfield, M., Pham, M., Valenzuela, J.G., 2006. Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics 7, 52.PubMedCrossRefGoogle Scholar
  7. Anguita, J., Ramamoorthi, N., Hovius, J.W., Das, S., Thomas, V., Persinski, R., Conze, D., Askenase, P.W., Rincon, M., Kantor, F.S., Fikrig, E., 2002. Salp15, an Ixodes scapularis salivary protein, inhibits CD4(+) T cell activation. Immunity 16, 849–859.PubMedCrossRefGoogle Scholar
  8. Arca, B., Lombardo, F., Francischetti, I.M., Pham, V.M., Mestres-Simon, M., Andersen, J.F., Ribeiro, J.M., 2007. An insight into the sialome of the adult female mosquito Aedes albopictus. Insect Biochem. Mol. Biol. 37, 107–127.PubMedCrossRefGoogle Scholar
  9. Assumpcao, T.C., Francischetti, I.M., Andersen, J.F., Schwarz, A., Santana, J.M., Ribeiro, J.M., 2008. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas’ disease. Insect Biochem. Mol. Biol. 38, 213–232.PubMedCrossRefGoogle Scholar
  10. Barros, V.C., Assumpcao, J.G., Cadete, A.M., Santos, V.C., Cavalcante, R.R., Araujo, R.N., Pereira, M.H., Gontijo, N.F., 2009. The role of salivary and intestinal complement system inhibitors in the midgut protection of triatomines and mosquitoes. PLoS One 4, e6047.PubMedCrossRefGoogle Scholar
  11. Baskova, I.P., Zavalova, L.L., 2001. Proteinase inhibitors from the medicinal leech Hirudo medicinalis. Biochemistry (Moscow) 66, 703–714.CrossRefGoogle Scholar
  12. Beaufays, J., Adam, B., Decrem, Y., Prevot, P.P., Santini, S., Brasseur, R., Brossard, M., Lins, L., Vanhamme, L., Godfroid, E., 2008. Ixodes ricinus tick lipocalins: identification, cloning, phylogenetic analysis and biochemical characterization. PLoS One 3, e3941.PubMedCrossRefGoogle Scholar
  13. Becher, E., Mahnke, K., Brzoska, T., Kalden, D.H., Grabbe, S., Luger, T.A., 1999. Human peripheral blood-derived dendritic cells express functional melanocortin receptor MC-1R. Ann. N. Y. Acad. Sci. U.S.A. 885, 188–195.CrossRefGoogle Scholar
  14. Berenberg, J.L., Ward, P.A., Sonenshine, D.E., 1972. Tick-bite injury: mediation by a complement-derived chemotictic chemotactic factor. J. Immunol. 109, 451–456.PubMedGoogle Scholar
  15. Bergman, D.K., Palmer, M.J., Caimano, M.J., Radolf, J.D., Wikel, S.K., 2000. Isolation and molecular cloning of a secreted immunosuppressant protein from Dermacentor andersoni salivary gland. J. Parasitol. 86, 516–525.PubMedGoogle Scholar
  16. Bergman, D.K., Ramachandra, R.N., Wikel, S.K., 1995. Dermacentor andersoni: salivary gland proteins suppressing T-lymphocyte responses to concanavalin A in vitro. Exp. Parasitol. 81, 262–271.PubMedCrossRefGoogle Scholar
  17. Bergman, D.K., Ramachandra, R.N., Wikel, S.K., 1998. Characterization of an immunosuppressant protein from Dermacentor andersoni (Acari: Ixodidae) salivary glands. J. Med. Entomol. 35, 505–509.PubMedGoogle Scholar
  18. Binnington, K.C., Stone, B.F., 1977. Distribution of catecholamines in the cattle tick Boophilus microplus. Comp. Biochem. Physiol. C. 58, 21–28.PubMedCrossRefGoogle Scholar
  19. Bjork, J., Hugli, T.E., Smedegard, G., 1985. Microvascular effects of anaphylatoxins C3a and C5a. J. Immunol. 134, 1115–1119.PubMedGoogle Scholar
  20. Bluestone, J.A., Mackay, C.R., O’Shea, J.J., Stockinger, B., 2009. The functional plasticity of T cell subsets. Nat. Rev. Immunol. 9, 811–816.PubMedCrossRefGoogle Scholar
  21. Bordet, J., 1895. Les leucocytes et les propriétés actives de serum chez les vaccinés. Ann. Inst. Pasteur 9, 462–506.Google Scholar
  22. Bours, M.J., Swennen, E.L., Di Virgilio, F., Cronstein, B.N., Dagnelie, P.C., 2006. Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol. Ther. 112, 358–404.PubMedCrossRefGoogle Scholar
  23. Brummitt, C.F., Sharp, B.M., Gekker, G., Keane, W.F., Peterson, P.K., 1988. Modulatory effects of beta-endorphin on interferon-gamma production by cultured peripheral blood mononuclear cells: heterogeneity among donors and the influence of culture medium. Brain Behav. Immun. 2, 187–197.PubMedCrossRefGoogle Scholar
  24. Calvo, E., Dao, A., Pham, V.M., Ribeiro, J.M., 2007. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem. Mol. Biol. 37, 164–175.PubMedCrossRefGoogle Scholar
  25. Calvo, E., Mans, B.J., Andersen, J.F., Ribeiro, J.M., 2006. Function and evolution of a mosquito salivary protein family. J. Biol. Chem. 281, 1935–1942.PubMedCrossRefGoogle Scholar
  26. Calvo, E., Mans, B.J., Ribeiro, J.M., Andersen, J.F., 2009. Multifunctionality and mechanism of ligand binding in a mosquito antiinflammatory protein. Proc. Natl. Acad. Sci. U.S.A. 106, 3728–3733.PubMedCrossRefGoogle Scholar
  27. Carregaro, V., Valenzuela, J.G., Cunha, T.M., Verri, W.A., Jr., Grespan, R., Matsumura, G., Ribeiro, J.M., Elnaiem, D.E., Silva, J.S., Cunha, F.Q., 2008. Phlebotomine salivas inhibit immune inflammation-induced neutrophil migration via an autocrine DC-derived PGE2/IL-10 sequential pathway. J. Leukoc. Biol. 84, 104–114.PubMedCrossRefGoogle Scholar
  28. Casadevall, A., Scharff, M.D., 1994. Serum therapy revisited: animal models of infection and development of passive antibody therapy. Antimicrob. Agents Chemother. 38, 1695–1702.PubMedCrossRefGoogle Scholar
  29. Cavalcante, R.R., Pereira, M.H., Gontijo, N.F., 2003. Anti-complement activity in the saliva of phlebotomine sand flies and other haematophagous insects. Parasitology 127, 87–93.PubMedCrossRefGoogle Scholar
  30. Chinery, W.A., Ayitey-Smith, E., 1977. Histamine blocking agent in the salivary gland homogenate of the tick Rhipicephalus sanguineus sanguineus. Nature 265, 366–367.PubMedCrossRefGoogle Scholar
  31. Chmelar, J., Anderson, J.M., Mu, J., Jochim, R.C., Valenzuela, J.G., Kopecky, J., 2008. Insight into the sialome of the castor bean tick, Ixodes ricinus. BMC Genomics 9, 233.PubMedCrossRefGoogle Scholar
  32. Couvreur, B., Beaufays, J., Charon, C., Lahaye, K., Gensale, F., Denis, V., Charloteaux, B., Decrem, Y., Prevot, P.P., Brossard, M., Vanhamme, L., Godfroid, E., 2008. Variability and action mechanism of a family of anticomplement proteins in Ixodes ricinus. PLoS One 3, e1400.PubMedCrossRefGoogle Scholar
  33. Davies, D.R., Metzger, H., 1983. Structural basis of antibody function. Annu. Rev. Immunol. 1, 87–117.PubMedCrossRefGoogle Scholar
  34. Deruaz, M., Frauenschuh, A., Alessandri, A.L., Dias, J.M., Coelho, F.M., Russo, R.C., Ferreira, B.R., Graham, G.J., Shaw, J.P., Wells, T.N., Teixeira, M.M., Power, C.A., Proudfoot, A.E., 2008. Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J. Exp. Med. 205, 2019–2031.PubMedCrossRefGoogle Scholar
  35. Dickinson, R.G., O’Hagan, J.E., Schotz, M., Binnington, K.C., Hegarty, M.P., 1976. Prostaglandin in the saliva of the cattle tick Boophilus microplus. Aust. J. Exp. Biol. Med. Sci. 54, 475–486.PubMedCrossRefGoogle Scholar
  36. Fazilleau, N., McHeyzer-Williams, L.J., McHeyzer-Williams, M.G., 2007. Local development of effector and memory T helper cells. Curr. Opin. Immunol. 19, 259–267.PubMedCrossRefGoogle Scholar
  37. Ferreira, C.A., Barbosa, M.C., Silveira, T.C., Valenzuela, J.G., Vaz Ida, S., Jr., Masuda, A., 2002. cDNA cloning, expression and characterization of a Boophilus microplus paramyosin. Parasitology 125, 265–274.PubMedCrossRefGoogle Scholar
  38. Fezza, F., Dillwith, J.W., Bisogno, T., Tucker, J.S., Di Marzo, V., Sauer, J.R., 2003. Endocannabinoids and related fatty acid amides, and their regulation, in the salivary glands of the lone star tick. Biochim. Biophys. Acta 1633, 61–67.PubMedCrossRefGoogle Scholar
  39. Francischetti, I.M., Mans, B.J., Meng, Z., Gudderra, N., Veenstra, T.D., Pham, V.M., Ribeiro, J.M., 2008. An insight into the sialome of the soft tick, Ornithodorus parkeri. Insect Biochem. Mol. Biol. 38, 1–21.PubMedCrossRefGoogle Scholar
  40. Francischetti, I.M., Sá-Nunes, A., Mans, B.J., Santos, I.M., Ribeiro, J.M., 2009. The role of saliva in tick feeding. Front. Biosci. 14, 2051–2088.PubMedCrossRefGoogle Scholar
  41. Francischetti, I.M., Valenzuela, J.G., Pham, V.M., Garfield, M.K., Ribeiro, J.M., 2002. Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae. J. Exp. Biol. 205, 2429–2451.PubMedGoogle Scholar
  42. Frauenschuh, A., Power, C.A., Deruaz, M., Ferreira, B.R., Silva, J.S., Teixeira, M.M., Dias, J.M., Martin, T., Wells, T.N., Proudfoot, A.E., 2007. Molecular cloning and characterization of a highly selective chemokine-binding protein from the tick Rhipicephalus sanguineus. J. Biol. Chem. 282, 27250–27258.PubMedCrossRefGoogle Scholar
  43. Fujisaki, K., Kamio, T., Kitaoka, S., 1984. Passage of host serum components, including antibodies specific for Theileria sergenti, across the digestive tract of argasid and ixodid ticks. Ann. Trop. Med. Parasitol. 78, 449–450.PubMedGoogle Scholar
  44. Garcia Gil de Munoz, F.L., Martinez-Barnetche, J., Lanz-Mendoza, H., Rodriguez, M.H., Hernandez-Hernandez, F.C., 2008. Prostaglandin E2 modulates the expression of antimicrobial peptides in the fat body and midgut of Anopheles albimanus. Arch. Insect Biochem. Physiol. 68, 14–25.CrossRefGoogle Scholar
  45. Garg, R., Juncadella, I.J., Ramamoorthi, N., Ashish, Ananthanarayanan, S.K., Thomas, V., Rincon, M., Krueger, J.K., Fikrig, E., Yengo, C.M., Anguita, J., 2006. Cutting edge: CD4 is the receptor for the tick saliva immunosuppressor, Salp15. J. Immunol. 177, 6579–6583.PubMedGoogle Scholar
  46. Gasque, P., 2004. Complement: a unique innate immune sensor for danger signals. Mol. Immunol. 41, 1089–1098.PubMedCrossRefGoogle Scholar
  47. Gettins, P.G., 2002. Serpin structure, mechanism, and function. Chem. Rev. 102, 4751–4804.PubMedCrossRefGoogle Scholar
  48. Gillespie, R.D., Dolan, M.C., Piesman, J., Titus, R.G., 2001. Identification of an IL-2 binding protein in the saliva of the Lyme disease vector tick, Ixodes scapularis. J. Immunol. 166, 4319–4326.PubMedGoogle Scholar
  49. Guo, R.F., Ward, P.A., 2005. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 23, 821–852.PubMedCrossRefGoogle Scholar
  50. Guo, X., Booth, C.J., Paley, M.A., Wang, X., DePonte, K., Fikrig, E., Narasimhan, S., Montgomery, R.R., 2009. Inhibition of neutrophil function by two tick salivary proteins. Infect. Immun. 77, 2320–2329.PubMedCrossRefGoogle Scholar
  51. Hajnicka, V., Kocakova, P., Slavikova, M., Slovak, M., Gasperik, J., Fuchsberger, N., Nuttall, P.A., 2001. Anti-interleukin-8 activity of tick salivary gland extracts. Parasite Immunol. 23, 483–489.PubMedCrossRefGoogle Scholar
  52. Hajnicka, V., Vancova, I., Kocakova, P., Slovak, M., Gasperik, J., Slavikova, M., Hails, R.S., Labuda, M., Nuttall, P.A., 2005. Manipulation of host cytokine network by ticks: a potential gateway for pathogen transmission. Parasitology 130, 333–342.PubMedCrossRefGoogle Scholar
  53. Hannier, S., Liversidge, J., Sternberg, J.M., Bowman, A.S., 2004. Characterization of the B-cell inhibitory protein factor in Ixodes ricinus tick saliva: a potential role in enhanced Borrelia burgdoferi transmission. Immunology 113, 401–408.PubMedCrossRefGoogle Scholar
  54. Hasko, G., Cronstein, B.N., 2004. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 25, 33–39.PubMedCrossRefGoogle Scholar
  55. Higgs, G.A., Vane, J.R., Hart, R.J., Porter, C., Wilson, R.G., 1976. Prostaglandins in saliva of the cattle tick Boophilus microplus (Canestrini) (Acarina: Ixodidae). Bull. Entomol. Res. 66, 665–670.CrossRefGoogle Scholar
  56. Hovius, J.W., de Jong, M.A., den Dunnen, J., Litjens, M., Fikrig, E., van der Poll, T., Gringhuis, S.I., Geijtenbeek, T.B., 2008. Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog. 4, e31.PubMedCrossRefGoogle Scholar
  57. Huber-Lang, M., Sarma, J.V., Zetoune, F.S., Rittirsch, D., Neff, T.A., McGuire, S.R., Lambris, J.D., Warner, R.L., Flierl, M.A., Hoesel, L.M., Gebhard, F., Younger, J.G., Drouin, S.M., Wetsel, R.A., Ward, P.A., 2006. Generation of C5a in the absence of C3: a new complement activation pathway. Nat. Med. 12, 682–687.PubMedCrossRefGoogle Scholar
  58. Inokuma, H., Kemp, D.H., Willadsen, P., 1994. Comparison of prostaglandin E2 (PGE2) in salivary gland of Boophilus microplus, Haemaphysalis longicornis and Ixodes holocyclus, and quantification of PGE2 in saliva, hemolymph, ovary and gut of B. microplus. J. Vet. Med. Sci. 56, 1217–1218.PubMedCrossRefGoogle Scholar
  59. Ip, W.K., Takahashi, K., Ezekowitz, R.A., Stuart, L.M., 2009. Mannose-binding lectin and innate immunity. Immunol. Rev. 230, 9–21.PubMedCrossRefGoogle Scholar
  60. Irving, J.A., Pike, R.N., Lesk, A.M., Whisstock, J.C., 2000. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res. 10, 1845–1864.PubMedCrossRefGoogle Scholar
  61. Janeway, C.A., Jr., Medzhitov, R., 2002. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216.PubMedCrossRefGoogle Scholar
  62. Jaworski, D.C., Jasinskas, A., Metz, C.N., Bucala, R., Barbour, A.G., 2001. Identification and characterization of a homologue of the pro-inflammatory cytokine macrophage migration inhibitory factor in the tick, Amblyomma americanum. Insect Mol. Biol. 10, 323–331.PubMedCrossRefGoogle Scholar
  63. Juncadella, I.J., Garg, R., Bates, T.C., Olivera, E.R., Anguita, J., 2008. The Ixodes scapularis salivary protein, salp15, prevents the association of HIV-1 gp120 and CD4. Biochem. Biophys. Res. Commun. 367, 41–46.PubMedCrossRefGoogle Scholar
  64. Kaufman, W.R., Sloley, B.D., Tatchell, R.J., Zbitnew, G.L., Diefenbach, T.J., Goldberg, J.I., 1999. Quantification and cellular localization of dopamine in the salivary gland of the ixodid tick Amblyomma hebraeum. Exp. Appl. Acarol. 23, 251–265.CrossRefGoogle Scholar
  65. Kocakova, P., Slavikova, M., Hajnicka, V., Slovak, M., Gasperik, J., Vancova, I., Fuchsberger, N., Nuttall, P.A., 2003. Effect of fast protein liquid chromatography fractionated salivary gland extracts from different ixodid tick species on interleukin-8 binding to its cell receptors. Folia Parasitol. (Praha) 50, 79–84.Google Scholar
  66. Koh, C.Y., Kini, R.M., 2009. Molecular diversity of anticoagulants from haematophagous animals. Thromb. Haemost. 102, 437–453.PubMedGoogle Scholar
  67. Konik, P., Slavikova, V., Salat, J., Reznickova, J., Dvoroznakova, E., Kopecky, J., 2006. Anti-tumour necrosis factor-alpha activity in Ixodes ricinus saliva. Parasite Immunol. 28, 649–656.PubMedCrossRefGoogle Scholar
  68. Kotsyfakis, M., Sá-Nunes, A., Francischetti, I.M., Mather, T.N., Andersen, J.F., Ribeiro, J.M., 2006. Antiinflammatory and immunosuppressive activity of sialostatin L, a salivary cystatin from the tick Ixodes scapularis. J. Biol. Chem. 281, 26298–26307.PubMedCrossRefGoogle Scholar
  69. Lackie, A.M., Gavin, S., 1989. Uptake and persistence of ingested antibody in the mosquito Anopheles stephensi. Med. Vet. Entomol. 3, 225–230.PubMedCrossRefGoogle Scholar
  70. Lanzaro, G.C., Lopes, A.H., Ribeiro, J.M., Shoemaker, C.B., Warburg, A., Soares, M., Titus, R.G., 1999. Variation in the salivary peptide, maxadilan, from species in the Lutzomyia longipalpis complex. Insect Mol. Biol. 8, 267–275.PubMedCrossRefGoogle Scholar
  71. Leboulle, G., Crippa, M., Decrem, Y., Mejri, N., Brossard, M., Bollen, A., Godfroid, E., 2002. Characterization of a novel salivary immunosuppressive protein from Ixodes ricinus ticks. J. Biol. Chem. 277, 10083–10089.PubMedCrossRefGoogle Scholar
  72. Mans, B.J., 2005. Tick histamine-binding proteins and related lipocalins: potential as therapeutic agents. Curr. Opin. Investig. Drugs 6, 1131–1135.PubMedGoogle Scholar
  73. Mans, B.J., Ribeiro, J.M., 2008. Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins. Insect Biochem. Mol. Biol. 38, 841–852.PubMedCrossRefGoogle Scholar
  74. Mans, B.J., Ribeiro, J.M., Andersen, J.F., 2008. Structure, function, and evolution of biogenic amine-binding proteins in soft ticks. J. Biol. Chem. 283, 18721–18733.PubMedCrossRefGoogle Scholar
  75. McHeyzer-Williams, L.J., McHeyzer-Williams, M.G., 2005. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513.PubMedCrossRefGoogle Scholar
  76. Megaw, M.W., Robertson, H.A., 1974. Dopamine and noradrenaline in the salivary glands and brain of the tick, Boophilus microplus: effect of reserpine. Experientia 30, 1261–1262.PubMedCrossRefGoogle Scholar
  77. Millington, G.W., 2006. Proopiomelanocortin (POMC): the cutaneous roles of its melanocortin products and receptors. Clin. Exp. Dermatol. 31, 407–412.PubMedCrossRefGoogle Scholar
  78. Monteiro, M.C., Nogueira, L.G., Almeida Souza, A.A., Ribeiro, J.M., Silva, J.S., Cunha, F.Q., 2005. Effect of salivary gland extract of Leishmania vector, Lutzomyia longipalpis, on leukocyte migration in OVA-induced immune peritonitis. Eur. J. Immunol. 35, 2424–2433.PubMedCrossRefGoogle Scholar
  79. Montgomery, R.R., Lusitani, D., De Boisfleury Chevance, A., Malawista, S.E., 2004. Tick saliva reduces adherence and area of human neutrophils. Infect. Immun. 72, 2989–2994.PubMedCrossRefGoogle Scholar
  80. Neira Oviedo, M., Ribeiro, J.M., Heyland, A., VanEkeris, L., Moroz, T., Linser, P.J., 2009. The salivary transcriptome of Anopheles gambiae (Diptera: Culicidae) larvae: a microarray-based analysis. Insect Biochem. Mol. Biol. 39, 382–394.PubMedCrossRefGoogle Scholar
  81. Nunn, M.A., Sharma, A., Paesen, G.C., Adamson, S., Lissina, O., Willis, A.C., Nuttall, P.A., 2005. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J. Immunol. 174, 2084–2091.PubMedGoogle Scholar
  82. Oliveira, C.J., Cavassani, K.A., More, D.D., Garlet, G.P., Aliberti, J.C., Silva, J.S., Ferreira, B.R., 2008. Tick saliva inhibits the chemotactic function of MIP-1alpha and selectively impairs chemotaxis of immature dendritic cells by down-regulating cell-surface CCR5. Int. J. Parasitol. 38, 705–716.PubMedCrossRefGoogle Scholar
  83. Osborne, R.H., 1996. Insect neurotransmission: neurotransmitters and their receptors. Pharmacol. Ther. 69, 117–142.PubMedCrossRefGoogle Scholar
  84. Pacheco, R., Prado, C.E., Barrientos, M.J., Bernales, S., 2009. Role of dopamine in the physiology of T-cells and dendritic cells. J. Neuroimmunol. 216, 8–19.PubMedCrossRefGoogle Scholar
  85. Packila, M., Guilfoile, P.G., 2002. Mating, male Ixodes scapularis express several genes including those with sequence similarity to immunoglobulin-binding proteins and metalloproteases. Exp. Appl. Acarol. 27, 151–160.PubMedCrossRefGoogle Scholar
  86. Paesen, G.C., Adams, P.L., Harlos, K., Nuttall, P.A., Stuart, D.I., 1999. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol. Cell 3, 661–671.PubMedCrossRefGoogle Scholar
  87. Paesen, G.C., Adams, P.L., Nuttall, P.A., Stuart, D.L., 2000. Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim. Biophys. Acta 1482, 92–101.PubMedCrossRefGoogle Scholar
  88. Paveglio, S.A., Allard, J., Mayette, J., Whittaker, L.A., Juncadella, I., Anguita, J., Poynter, M.E., 2007. The tick salivary protein, Salp15, inhibits the development of experimental asthma. J. Immunol. 178, 7064–7071.PubMedGoogle Scholar
  89. Peterkova, K., Vancova, I., Hajnicka, V., Slovak, M., Simo, L., Nuttall, P.A., 2008. Immunomodulatory arsenal of nymphal ticks. Med. Vet. Entomol. 22, 167–171.PubMedCrossRefGoogle Scholar
  90. Petzel, D.H., Parrish, A.K., Ogg, C.L., Witters, N.A., Howard, R.W., Stanley-Samuelson, D.W., 1993. Arachidonic acid and prostaglandin E2 in Malpighian tubules of female yellow fever mosquitoes. Insect Biochem. Mol. Biol. 23, 431–437.PubMedCrossRefGoogle Scholar
  91. Prevot, P.P., Adam, B., Boudjeltia, K.Z., Brossard, M., Lins, L., Cauchie, P., Brasseur, R., Vanhaeverbeek, M., Vanhamme, L., Godfroid, E., 2006. Anti-hemostatic effects of a serpin from the saliva of the tick Ixodes ricinus. J. Biol. Chem. 281, 26361–26369.PubMedCrossRefGoogle Scholar
  92. Ribeiro, J.M., 1995. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect. Agents Dis. 4, 143–152.PubMedGoogle Scholar
  93. Ribeiro, J.M., Alarcon-Chaidez, F., Francischetti, I.M., Mans, B.J., Mather, T.N., Valenzuela, J.G., Wikel, S.K., 2006. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 36, 111–129.PubMedCrossRefGoogle Scholar
  94. Ribeiro, J.M., Andersen, J., Silva-Neto, M.A., Pham, V.M., Garfield, M.K., Valenzuela, J.G., 2004. Exploring the sialome of the blood-sucking bug Rhodnius prolixus. Insect Biochem. Mol. Biol. 34, 61–79.PubMedCrossRefGoogle Scholar
  95. Ribeiro, J.M., Charlab, R., Valenzuela, J.G., 2001. The salivary adenosine deaminase activity of the mosquitoes Culex quinquefasciatus and Aedes aegypti. J. Exp. Biol. 204, 2001–2010.PubMedGoogle Scholar
  96. Ribeiro, J.M., Katz, O., Pannell, L.K., Waitumbi, J., Warburg, A., 1999. Salivary glands of the sand fly Phlebotomus papatasi contain pharmacologically active amounts of adenosine and 5'-AMP. J. Exp. Biol. 202, 1551–1559.PubMedGoogle Scholar
  97. Ribeiro, J.M., Makoul, G.T., Levine, J., Robinson, D.R., Spielman, A., 1985. Antihemostatic, antiinflammatory, and immunosuppressive properties of the saliva of a tick, Ixodes dammini. J. Exp. Med. 161, 332–344.PubMedCrossRefGoogle Scholar
  98. Ribeiro, J.M., Makoul, G.T., Robinson, D.R., 1988. Ixodes dammini: evidence for salivary prostacyclin secretion. J. Parasitol. 74, 1068–1069.PubMedCrossRefGoogle Scholar
  99. Ribeiro, J.M., Modi, G., 2001. The salivary adenosine/AMP content of Phlebotomus argentipes Annandale and Brunetti, the main vector of human kala-azar. J. Parasitol. 87, 915–917.PubMedGoogle Scholar
  100. Ribeiro, J.M., Valenzuela, J.G., 2003. The salivary purine nucleosidase of the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol. 33, 13–22.PubMedCrossRefGoogle Scholar
  101. Ribeiro, J.M., Walker, F.A., 1994. High affinity histamine-binding and antihistaminic activity of the salivary nitric oxide-carrying heme protein (nitrophorin) of Rhodnius prolixus. J. Exp. Med. 180, 2251–2257.PubMedCrossRefGoogle Scholar
  102. Ribeiro, J.M., Weis, J.J., Telford, S.R., 3rd, 1990. Saliva of the tick Ixodes dammini inhibits neutrophil function. Exp. Parasitol. 70, 382–388.PubMedCrossRefGoogle Scholar
  103. Sá-Nunes, A., Bafica, A., Antonelli, L.R., Choi, E.Y., Francischetti, I.M., Andersen, J.F., Shi, G.P., Chavakis, T., Ribeiro, J.M., Kotsyfakis, M., 2009. The immunomodulatory action of sialostatin L on dendritic cells reveals its potential to interfere with autoimmunity. J. Immunol. 182, 7422–7429.PubMedCrossRefGoogle Scholar
  104. Sá-Nunes, A., Bafica, A., Lucas, D.A., Conrads, T.P., Veenstra, T.D., Andersen, J.F., Mather, T.N., Ribeiro, J.M., Francischetti, I.M., 2007. Prostaglandin E2 is a major inhibitor of dendritic cell maturation and function in Ixodes scapularis saliva. J. Immunol. 179, 1497–1505.PubMedGoogle Scholar
  105. Salzet, M., Capron, A., Stefano, G.B., 2000. Molecular crosstalk in host-parasite relationships: schistosome- and leech-host interactions. Parasitol. Today 16, 536–540.PubMedCrossRefGoogle Scholar
  106. Salzet, M., Salzet-Raveillon, B., Cocquerelle, C., Verger-Bocquet, M., Pryor, S.C., Rialas, C.M., Laurent, V., Stefano, G.B., 1997. Leech immunocytes contain proopiomelanocortin: nitric oxide mediates hemolymph proopiomelanocortin processing. J. Immunol. 159, 5400–5411.PubMedGoogle Scholar
  107. Samson, M.T., Small-Howard, A., Shimoda, L.M., Koblan-Huberson, M., Stokes, A.J., Turner, H., 2003. Differential roles of CB1 and CB2 cannabinoid receptors in mast cells. J. Immunol. 170, 4953–4962.PubMedGoogle Scholar
  108. Santos, A., Ribeiro, J.M., Lehane, M.J., Gontijo, N.F., Veloso, A.B., Sant’ Anna, M.R., Nascimento Araujo, R., Grisard, E.C., Pereira, M.H., 2007. The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae). Insect Biochem. Mol. Biol. 37, 702–712.PubMedCrossRefGoogle Scholar
  109. Sauer, J.R., McSwain, J.L., Bowman, A.S., Essenberg, R.C., 1995. Tick salivary gland physiology. Annu. Rev. Entomol. 40, 245–267.PubMedCrossRefGoogle Scholar
  110. Sauer, J.R., McSwain, J.L., Essenberg, R.C., 1994. Cell membrane receptors and regulation of cell function in ticks and blood-sucking insects. Int. J. Parasitol. 24, 33–52.PubMedCrossRefGoogle Scholar
  111. Schroeder, H., Daix, V., Gillet, L., Renauld, J.C., Vanderplasschen, A., 2007. The paralogous salivary anti-complement proteins IRAC I and IRAC II encoded by Ixodes ricinus ticks have broad and complementary inhibitory activities against the complement of different host species. Microbes Infect. 9, 247–250.PubMedCrossRefGoogle Scholar
  112. Slominski, A., Wortsman, J., Luger, T., Paus, R., Solomon, S., 2000. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol. Rev. 80, 979–1020.PubMedGoogle Scholar
  113. Stanley, D., 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51, 25–44.PubMedCrossRefGoogle Scholar
  114. Stark, K.R., James, A.A., 1998. Isolation and characterization of the gene encoding a novel factor Xa-directed anticoagulant from the yellow fever mosquito, Aedes aegypti. J. Biol. Chem. 273, 20802–20809.PubMedCrossRefGoogle Scholar
  115. Thelen, M., Stein, J.V., 2008. How chemokines invite leukocytes to dance. Nat. Immunol. 9, 953–959.PubMedCrossRefGoogle Scholar
  116. Tyson, K., Elkins, C., Patterson, H., Fikrig, E., de Silva, A., 2007. Biochemical and functional characterization of Salp20, an Ixodes scapularis tick salivary protein that inhibits the complement pathway. Insect Mol. Biol. 16, 469–479.PubMedCrossRefGoogle Scholar
  117. Tyson, K.R., Elkins, C., de Silva, A.M., 2008. A novel mechanism of complement inhibition unmasked by a tick salivary protein that binds to properdin. J. Immunol. 180, 3964–3968.PubMedGoogle Scholar
  118. Umemiya, R., Hatta, T., Liao, M., Tanaka, M., Zhou, J., Inoue, N., Fujisaki, K., 2007. Haemaphysalis longicornis: molecular characterization of a homologue of the macrophage migration inhibitory factor from the partially fed ticks. Exp. Parasitol. 115, 135–142.PubMedCrossRefGoogle Scholar
  119. Valenzuela, J.G., Charlab, R., Mather, T.N., Ribeiro, J.M., 2000. Purification, cloning, and expression of a novel salivary anticomplement protein from the tick, Ixodes scapularis. J. Biol. Chem. 275, 18717–18723.PubMedCrossRefGoogle Scholar
  120. Valenzuela, J.G., Francischetti, I.M., Pham, V.M., Garfield, M.K., Mather, T.N., Ribeiro, J.M., 2002a. Exploring the sialome of the tick Ixodes scapularis. J. Exp. Biol. 205, 2843–2864.PubMedGoogle Scholar
  121. Valenzuela, J.G., Pham, V.M., Garfield, M.K., Francischetti, I.M., Ribeiro, J.M., 2002b. Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 32, 1101–1122.PubMedCrossRefGoogle Scholar
  122. Valenzuela, J.G., Ribeiro, J.M., 1998. Purification and cloning of the salivary nitrophorin from the hemipteran Cimex lectularius. J. Exp. Biol. 201, 2659–2664.PubMedGoogle Scholar
  123. Vannacci, A., Passani, M.B., Pierpaoli, S., Giannini, L., Mannaioni, P.F., Masini, E., 2003. Nitric oxide modulates the inhibitory effect of cannabinoids on the immunological activation of guinea pig mast cells. Inflamm. Res. 52(Suppl. 1), S07–S08.PubMedCrossRefGoogle Scholar
  124. von Behring, E., Kitasato, S., 1890. Ueber das Zustandekommen der Diphtherie-Immunitat und der Tetanus-Immunitat bei thieren. Deutsch. Med. Wochenscher 16.Google Scholar
  125. Wang, H., Nuttall, P.A., 1994. Excretion of host immunoglobulin in tick saliva and detection of IgG-binding proteins in tick haemolymph and salivary glands. Parasitology 109, 525–530.PubMedCrossRefGoogle Scholar
  126. Wang, H., Nuttall, P.A., 1995a. Immunoglobulin-G binding proteins in the ixodid ticks, Rhipicephalus appendiculatus, Amblyomma variegatum and Ixodes hexagonus. Parasitology 111, 161–165.PubMedCrossRefGoogle Scholar
  127. Wang, H., Nuttall, P.A., 1995b. Immunoglobulin G binding proteins in male Rhipicephalus appendiculatus ticks. Parasite Immunol. 17, 517–524.PubMedCrossRefGoogle Scholar
  128. Wang, H., Paesen, G.C., Nuttall, P.A., Barbour, A.G., 1998. Male ticks help their mates to feed. Nature 391, 753–754.PubMedCrossRefGoogle Scholar
  129. Weichsel, A., Andersen, J.F., Champagne, D.E., Walker, F.A., Montfort, W.R., 1998. Crystal structures of a nitric oxide transport protein from a blood-sucking insect. Nat. Struct. Biol. 5, 304–309.PubMedCrossRefGoogle Scholar
  130. Wikel, S.K., 1979. Acquired resistance to ticks: expression of resistance by C4-deficient guinea pigs. Am. J. Trop. Med. Hyg. 28, 586–590.PubMedGoogle Scholar
  131. Wikel, S.K., 1982. Immune responses to arthropods and their products. Annu. Rev. Entomol. 27, 21–48.PubMedCrossRefGoogle Scholar
  132. Wikel, S.K., Allen, J.R., 1978. Acquired resistance to ticks. III. Cobra venom factor and the resistance response. Immunology 32, 457–465.PubMedGoogle Scholar
  133. Yan, X., Feng, H., Yu, H., Yang, X., Liu, J., Lai, R., 2008. An immunoregulatory peptide from salivary glands of the horsefly, Hybomitra atriperoides. Dev. Comp. Immunol. 32, 1242–1247.PubMedCrossRefGoogle Scholar
  134. Yu, D., Liang, J., Yu, H., Wu, H., Xu, C., Liu, J., Lai, R., 2006. A tick B-cell inhibitory protein from salivary glands of the hard tick, Hyalomma asiaticum asiaticum. Biochem. Biophys. Res. Commun. 343, 585–590.PubMedCrossRefGoogle Scholar
  135. Zhao, R., Yu, X., Yu, H., Han, W., Zhai, L., Han, J., Liu, J., 2009. Immunoregulatory peptides from salivary glands of the horsefly, Tabanus pleskei. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 154, 1–5.PubMedCrossRefGoogle Scholar
  136. Zhou, W., Blackwell, T.S., Goleniewska, K., O’Neal, J.F., Fitzgerald, G.A., Lucitt, M., Breyer, R.M., Peebles, R.S., Jr., 2007a. Prostaglandin I2 analogs inhibit Th1 and Th2 effector cytokine production by CD4 T cells. J. Leukoc. Biol. 81, 809–817.PubMedCrossRefGoogle Scholar
  137. Zhou, W., Hashimoto, K., Goleniewska, K., O’Neal, J.F., Ji, S., Blackwell, T.S., Fitzgerald, G.A., Egan, K.M., Geraci, M.W., Peebles, R.S., Jr., 2007b. Prostaglandin I2 analogs inhibit proinflammatory cytokine production and T cell stimulatory function of dendritic cells. J. Immunol. 178, 702–710.PubMedGoogle Scholar
  138. Zipfel, P.F., Skerka, C., 2009. Complement regulators and inhibitory proteins. Nat. Rev. Immunol. 9, 729–740.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Anderson Sá-Nunes
    • 1
    Email author
  • Carlo José Freire de Oliveira
    • 2
    • 3
  1. 1.Laboratory of Experimental Immunology, Department of Immunology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
  2. 2.Section of Vector Biology, Laboratory of Malaria and Vector ResearchNational Institute of Allergy and Infectious Diseases, National Institutes of HealthRockvilleUSA
  3. 3.Department of Biochemistry and Immunology, School of Medicine of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil

Personalised recommendations