Antivenoms and Coagulation

  • Elda E. SánchezEmail author
  • Alexis Rodríguez-Acosta
  • Esteban Cantu
  • Belsy Guerrero


The treatment of snake envenomations has been a complicated battle for over a century. Since the development of antivenoms, inevitably fatal venoms have decreased to rarely fatal provided that antivenom is administered early. Snake venoms contain many molecules that act directly at the site of the bite, while others set off cascades of reactions leading to cumulative disruptions. A primary example is the disruption on the coagulation cascade. Venom molecules promote or inhibit molecules involved in the hemostatic system causing major disturbances that can lead to detrimental consequences. Although antivenoms have been present for a long time, the production and availability of these snakebite antidotes have fallen short. In recent years, some pharmaceutical companies have halted their production of antivenoms due to unprofitable circumstances, and the stringent regulations to meet safety standards have deterred others from considering taking on such an endeavor. Physicians, scientists, poison control and government administrators must make a profound effort to come together to bring in new ideas that will aid in resolving those troubled issues surrounding antivenoms. The focus of this chapter is to briefly address venom components acting on the hemostatic pathway and the use and concerns involved with the antivenoms utilized to neutralize them.


Snake Venom Hemostatic System Venom Protein Venom Component Clot Retraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adame, B.L., Soto, J.G., Secraw, D.J., Pérez, J.C., 1990. Regional variation of biochemical characteristics and antigenicity in Great basin rattlesnake (Crotalus viridis lutosus) venom. Comp. Biochem. Physiol. B. 97, 95–101.PubMedGoogle Scholar
  2. Aguilar, I., Guerrero, B., Salazar, A.M., Girón, M.E., Pérez, J.C., Sánchez, E.E., Rodríguez-Acosta, A., 2007. Individual venom variability in the South American rattlesnake Crotalus durissus cumanensis. Toxicon 50, 214–224.PubMedCrossRefGoogle Scholar
  3. Amiconi, G., Amoresano, A., Boumis, G., De Cristofaro, R., De Pascali, A., Di Girolamo, S., Maras, B., Scaloni, A., 2000. A novel venombin B from Agkistrodon contortrix contortrix: evidence for recognition properties in the surface around the primary specificity pocket different from thrombin. Biochemistry 39, 10294–10308.PubMedCrossRefGoogle Scholar
  4. Anai, K., Masahiko, S., Yoshida, E., Maruyama, M., 2002. Neutralization of a snake venom hemorrhagic metalloproteinase prevents coagulopathy after subcutaneous injection of Bothrops jararaca venom in rats. Toxicon 40, 63–68.PubMedCrossRefGoogle Scholar
  5. Andrews, R.K., Gardiner, E.E., Asazuma, N., Berlanga, O., Tulasne, D., Nieswandt, B., Smith, A.I., Berndt, M.C., Watson, S.P., 2001. A novel viper venom metalloproteinase, alborhagin, is an agonist at the platelet collagen receptor GPVI. J. Biol. Chem. 276, 28092–28097.PubMedCrossRefGoogle Scholar
  6. Au, L.C., Lin, S.B., Chou, J.S., Teh, G.W., Chang, K.J., Shih, C.M., 1993. Molecular cloning and sequence analysis of the cDNA for ancrod, a thromin-like enzyme from the venom of Calloselasma rhodostoma. Biochem. J. 294, 387–390.PubMedGoogle Scholar
  7. Azofeifa-Cordero, G. Arce-Estrada, V., Flores-Diaz, M., Alape-Giron, A., 2008. Immunization of cDNA of a novel P-III type metalloproteinase from the rattlesnake Crotalus durissus durissus elicits antibodies which neutralize 69% of the hemorrhagic induced by the whole venom. Toxicon 52, 302–308.PubMedCrossRefGoogle Scholar
  8. Bogarin, G., Morais, J.F., Yamaguchi, I.K., Stephano, M.A., Marcelino, J.R., Nishikawa, A.K., Guidolin, R., Rojas, G., Higashi, H.G., Gutierrez, J.M., 2000. Neutralization of crotaline snake venoms from Central and South America by antivenoms produced in Brazil and Costa Rica. Toxicon 38, 1429–1441.PubMedCrossRefGoogle Scholar
  9. Boyer, L.V., Seifert, M.D., Clark, R.F., McNally, J.T., Williams, S.R., Nordt, S.P., Walter, F.G., Dart, R.C., 1999. Recurrent and persistent coagulopathy following pit viper envenomation. Arch. Intern. Med. 159, 706–710.PubMedCrossRefGoogle Scholar
  10. Calvete, J.J., Juarez, P., Sanz, L., 2007. Snake venomics. Strategy and applications. J. Mass Spectrom. 42, 1405–1414.PubMedCrossRefGoogle Scholar
  11. Chippaux, J.P., Goyffon, M., 1998. Venoms, antivenoms, and immunotherapy. Toxicon 36, 823–846.PubMedCrossRefGoogle Scholar
  12. Crawley, J.T.B., Zanardelli, S., Chion, C.K.N.K., Lane, D.A., 2007. The central role of thrombin in hemostasis. J. Thromb. Haemost. 5(Suppl. 1), 95–101.PubMedCrossRefGoogle Scholar
  13. Escalante, T., Franceschi, A., Rucavado, A., Gutiérrez, J.M., 2000. Effectiveness of batimastat, a synthetic inhibitor of matrix metalloproteinases, in neutralizing local tissue damage induced by BaP1, a hemorrhagic metalloproteinase from the venom of the snake Bothrops asper. Biochem. Pharmacol. 60, 269–274.PubMedCrossRefGoogle Scholar
  14. Fortová, H., Suttnar, J., Dyr, J.E., Pristach, J., 1997. Simultaneous isolation of protein C activator, fibrin clot promoting enzyme (fibrozyme) and phospholipase A2 from the venom of the southern copperhead snake. J. Chromatogr/ B. Biomed. Sci. Appl. 694, 49–53.CrossRefGoogle Scholar
  15. Ganter, M.T., Hofer, C.K., 2008. Coagulation monitoring: current techniques and clinical use of viscoelastic point-of-care coagulation devices. Int. Anesthesia Res. Soc. 106, 1366–1375.Google Scholar
  16. Glenn, J.L., Straight, R., 1978. Mojave rattlesnake Crotalus scutulatus scutulatus venom: variation in toxicity with geographical origin. Toxicon 16, 81–84.PubMedCrossRefGoogle Scholar
  17. Glenn, J.L., Straight, R.C., Wolfe, M.C., Hardy, D.L., 1983. Geographical variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) venom properties. Toxicon 21, 119–130.PubMedCrossRefGoogle Scholar
  18. Gutiérrez, J.M., Rojas, G., Lomonte, B., Gené, J.A., Chaves, F., Alvarado, J., Rojas, E., 1990. Standardization of assay for testing the neutralizing ability of antivenoms. Toxicon 28, 1127–1129.PubMedCrossRefGoogle Scholar
  19. Gutiérrez, J.M. Rojas, G., Bogarin, G., Lomonte, B., 1996. Evaluation of the neutralizing ability of antivenoms for the treatment of snake bite envenoming in Central America, in: Bon, C., Goyffon, M. (Eds.), Envenomings and their Treatments. Editions Fondation Marcel Mérieux, Lyon, pp. 223–231.Google Scholar
  20. Gutiérrez, J.M., Rucavado, A., 2000. Snake venom metalloprotineases: their role in the pathogenesis of local tissue damage. Biochimie 82, 841–850.PubMedCrossRefGoogle Scholar
  21. Gutiérrez, J.M., Lomonte, B., León, G., Alape-Girón, A., Florez-Díaz, M., Sanz, L., Angulo, Y., Calvete, J.J., 2009. Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. J. Proteomics 72, 165–182.PubMedCrossRefGoogle Scholar
  22. Hotez, P., Ottesen, E., Fenwick, A., Molyneux, D., 2006. The neglected tropical diseases: the ancient afflictions of stigma and poverty and the prospects for their control and elimination. Adv. Exp. Med. Biol. 582, 23–33.PubMedCrossRefGoogle Scholar
  23. Ismail, M, Abd-Elsalam, M.A. 1998. Pharmacokinetics of 125I-labelled IgG, F(ab)2 and Fab fractions of scorpion and snake antivenins: merits and potential for therapeutic use. Toxicon 36, 1523–1528.PubMedCrossRefGoogle Scholar
  24. Jia, Y., Cantu, B., Sánchez, E.E., Pérez, J.C., 2008. Complementary DNA sequencing and identification of mRNAs from the venomous gland of Agkistrodon piscivorus leucostoma. Toxicon 51, 1457–1566.PubMedCrossRefGoogle Scholar
  25. Kashima, S., Roberto, P.G. Soares, A.M., Astolfi-Filho, S., Pereira, J.O., Giuliati, S., Faria, M., Jr., Xavier, M.A.S., Fontes, M.R.M., Giglio, J.R., Franca, S.C., 2004. Analysis of Bothrops jararacussu venomous gland transcriptome focusing on structural and functional aspects: I-gene expression profile of highly expressed phospholipases A2. Biochimie 86, 211–219.PubMedCrossRefGoogle Scholar
  26. Kasturiratne, A., Wickremasinghe, A.R., de Silva, N., Gunawardena, N.K., Pathmeswaran, A., Premaratna, R., Savioli, L., Lalloo, D.G., Silva, H.J., 2008. The global burden of snakebite: a literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med. 5, e218.PubMedCrossRefGoogle Scholar
  27. Kitchens, C.S., Eskin, T.A., 2008. Fatality in a case of envenomation by Crotalus adamanteus initially successfully treated with polyvalent ovine antivenom followed by recurrence of defibrinogenation syndrome. J. Med. Toxicol. 4, 180–183.PubMedCrossRefGoogle Scholar
  28. Kiziel, W., Hermodson, M.A., Davie, E.W., 1976. Factor X-activating enzyme from Russell’s viper venom: isolation and characterization. Biochemistry 15, 4901–4906.CrossRefGoogle Scholar
  29. Komori, Y., Nikai, T., Ohara, A., Yagihashi, S., Sugihara, H. 1993. Effect of bilineobin, a thrombin-like proteinase from the venom of common cantil (Agkistrodon bilineatus). Toxicon 31, 257–270.PubMedCrossRefGoogle Scholar
  30. Kornacker, P.M., 1999. Checklist and Key to the Snakes of Venezuela. Lista Sistemática y Clave Para Las Serpientes de Venezuela. Pako-Verlag, Rheinbach, Germany.Google Scholar
  31. Lomonte, B., Tarkowski, A., Hanson, H.A., 1993. Host response to Bothrops asper snake venom: analysis of edema formation, inflammatory cells, and cytokine release in mouse model. Inflammation 17, 93–105.PubMedCrossRefGoogle Scholar
  32. Marsh, N., Williams, V., 2005. Practical applications of snake venom toxins in haemostasis. Toxicon 45, 1171–1181.PubMedCrossRefGoogle Scholar
  33. Markland, F., 1998. Snake venoms and the hemostatic system. Toxicon 36, 1749–1800.PubMedCrossRefGoogle Scholar
  34. Minton, S.A., Weinstein, S.A., 1986. Geographic and ontogenic variation in venom of the western diamondback rattlesnake (Crotalus atrox). Toxicon 24, 71–80.PubMedCrossRefGoogle Scholar
  35. Nishida, S., Fujita, T., Kohno, N., Atoda, H., Morita, T., Takeya, H., Kido, I., Paine, M.J., Kawabata, S., Iwanaga, S., 1995. cDNA cloning and deduced amino acid sequence of prothrombin activator (ecarin) from Kenyan Echis carinatus venom. Biochemistry 34, 1771–1778.PubMedCrossRefGoogle Scholar
  36. Otero, R. Gutiérrez, J., Mesa, M.B., Duque, E., Rodríguez, O., Luis Arango, J., Gomez, F., Toro, A., Cano, F., Maria Rodríguez, L, Caro, E., Martínez, J., Cornejo, W. Mariano, Gómez, L., Luis Uribe, F., Cárdenas, S. Nuñez, V., Díaz, A., 2002. Complications of Bothrops, Porthidium, and Bothriechis snakebites in Colombia. A clinical and epidemiological study of 39 cases attended in a university hospital. Toxicon 40, 1107–1114.PubMedCrossRefGoogle Scholar
  37. Rengifo, C., Rodríguez-Acosta, A., 2005. Serpientes, Venenos y su Tratamiento en Venezuela. Fondo de Publicaciones de la Facultad de Medicina de la Universidad Central de Venezuela. Caracas.Google Scholar
  38. Ribeiro, L.A., Jorge, M.T., 1990. Epidemiology and clinical picture of accidents by adult and young snakes Bothrops jararaca. Rev. Inst. Med. Trop. Sao Paulo 32, 436–442.PubMedCrossRefGoogle Scholar
  39. Riviere, G., Choumet, V., Audebert, F., Sabouraud, A., Debray, M., Scherrmann, J-M., Bon, C., 1997. Effect of antivenom on venom pharmacokinetics in experimentally envenomed rabbits: toward and optimization of antivenom therapy. J. Pharmacol. Exp. Ther. 281, 1–8.PubMedGoogle Scholar
  40. Rodríguez-Acosta, A., Aguilar, I., Giron, M.E., Rodríguez-Pulido, V., 1998. Hemorrhagic activity of neotropical rattlesnake (Crotalus vegrandis Klauber 1941) venom. Natural Toxins 6, 15–18.PubMedCrossRefGoogle Scholar
  41. Rojnuckarin, P., Intragumtornchai, T., Sattapiboon, R. Muanpasitporn, C., Pakmanee, N. Khow, O., Swasdikul, D., 1999. The effects of green pit viper (Trimeresurus albolabris and Trimeresurus macrops) venom on the fibrinolytic system in human. Toxicon 37, 743–755.PubMedCrossRefGoogle Scholar
  42. Rojnuckarin, P., Maunpasitporn, C., Chanhome, L., Arpijuntarangkoon, J., Intragumtornchai, T., 2006. Molecular cloning of novel serine proteases and phospholipases A2 from green pit viper (Trimeresurus albolabris) venom gland cDNA library. Toxicon 47, 279–287.PubMedCrossRefGoogle Scholar
  43. Rojnuckarin, P. 2008. Snake venom and haemostasis-an overview. Thrombosis and Haemostasis. Touch Briefings.
  44. Salazar, A.M., Aguilar, I., Guerrero, B., Girón, M.E., Lucena, S., Sánchez, E.E., Rodríguez-Acosta, A., 2008. Intraspecies differences in hemostatic venom activities of the South American rattlesnakes, Crotalus durissus cumanensis, as revealed by a range of protease inhibitors. Blood. Coagul. Fibrinolysis 19, 525–30.PubMedCrossRefGoogle Scholar
  45. Salazar, A.M., Guerrero, B., Cantu, B., Cantu, E., Rodríguez-Acosta, A., Pérez, J.C., Galán, J.A., Tao, A., Sánchez, E.E., 2009. Venom variation in hemostasis of the southern Pacific rattlesnake (Crotalus oreganus helleri): isolation of hellerase. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 149, 307–316.PubMedCrossRefGoogle Scholar
  46. Sánchez, E.E., Galán, J.A., Perez, J.C., Rodríguez-Acosta, A., Chase, P.B., Pérez, J.C., 2003. The efficacy of two antivenoms against the venom of North American snakes. Toxicon 41, 357–365.PubMedCrossRefGoogle Scholar
  47. Schöni, R. 2005. The use of snake venom-derived compounds for new functional diagnostic test kits in the field of haemostasis. Pathophysiol. Haemost. Thromb. 34, 234–240.PubMedCrossRefGoogle Scholar
  48. Sells, P.G., 2003. Animal experimentation in snake venom research and in vitro alternatives. Toxicon 42, 115–133.PubMedCrossRefGoogle Scholar
  49. Serrano, S.M.T., Mentele, R., Sampaio, C.A.M., Fink, E., 1995. Purification, characterization and amino acid sequence of a serine proteinase, PA-BJ, with platelet aggregating activity from the venom of Bothrops jararaca. Biochemistry 34, 7186–7193.PubMedCrossRefGoogle Scholar
  50. Teng, C.M., Huang, T.F., 1991. Inventory of exogenous inhibitors of platelet aggregation. For the subcommittee on nomenclature of exogenous hemostatic factors of the scientific and standardization committee of the international society on thrombosis and haemostasis. Thromb. Haemost. 65, 624–626.PubMedGoogle Scholar
  51. Tokunaga, F., Nagasawa, K., Tamura, S., Miyata, T., Iwanaga, S., Kisiel, W., 1988. The factor V-activating enzyme (RVV-V) from Russell’s viper venom. Identification of isoproteins RVV-V alpha, -V beta, and -V gamma and their complete amino acid sequences. J. Biol. Chem. 263, 17471–17481.PubMedGoogle Scholar
  52. World Health Organization, 1981. Progress in the characterization of venoms and standardization of antivenoms. WHO Offset Publication 58, Geneva.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Elda E. Sánchez
    • 1
    Email author
  • Alexis Rodríguez-Acosta
    • 2
  • Esteban Cantu
    • 1
  • Belsy Guerrero
    • 3
  1. 1.Natural Toxins Research Center, College of Arts and SciencesTexas A&M University-KingsvilleKingsvilleUSA
  2. 2.Immunochemistry SectionTropical Medicine Institute of the Universidad Central de VenezuelaCaracasRepública Bolivariana de Venezuela
  3. 3.Laboratorio de Fisiopatología, Centro de Medicina ExperimentalInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasRepública Bolivariana de Venezuela

Personalised recommendations