Hypotensive Proteins from Hematophagous Animals

  • P. TakáčEmail author
  • H. Tsujimoto
  • D.E. Champagne


Diverse arthropods exploit vertebrate blood as a food resource, despite the fact that this resource is defended by an array of haemostatic, inflammatory, and immune responses, as well as overt defensive behaviors. These defenses have selected for a broad array of antihaemostatic, anti-inflammatory, and immunomodulatory factors, which are secreted in the saliva of the blood-feeder and injected into the wound during the feeding process. Haemostasis includes three interacting branches: platelet activation and aggregation, vasoconstriction, and coagulation (or clotting). This review deals with salivary factors that counter the vasoconstriction that normally results following vascular injury, but as the branches of haemostasis overlap, and indeed haemostasis interacts with inflammation and immunity, some molecules with vasodilatory (hypotensive) activity may also affect other aspects of the vertebrate response, in which case they are also discussed. Blood-feeding has evolved on numerous independent occasions, leading to a wide diversity of molecules with hypotensive activity amongst extant arthropods. These molecules exploit mechanisms that include direct interaction with vertebrate receptors or signaling pathways leading to vasodilation, sequestration of endogenously generated vasoconstrictors, and enzymatic destruction of vasoconstrictors. Some vasodilators, specifically the nitrophorins from Rhodnius and Cimex, allow the arthropod to store physiological amounts of nitric oxide and secrete it into the bite site during the course of the blood meal. Finally, several instances are noted where arthropod saliva is known to contain hypotensive activity, but the molecules involved have not been identified.


Nitric Oxide Biogenic Amine Vasodilatory Activity Ixodid Tick Catechol Oxidase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andersen, J.F., 2009. Structure and mechanism in salivary proteins from blood-feeding arthropods. Toxicon [Epub ahead of print]. doi: 10.1016/j.toxicon.2009.11.002Google Scholar
  2. Andersen, J.F., Champagne, D.E., Weichsel, A., Ribeiro, J.M., Balfour, C.A., Dress, V., Montfort, W.R., 1997. Nitric oxide binding and crystallization of recombinant nitrophorin I, a nitric oxide transport protein from the blood-sucking bug Rhodnius prolixus . Biochemistry 36, 4423–4428.PubMedCrossRefGoogle Scholar
  3. Andersen, J.F., Ding, X.D., Balfour, C., Shokhireva, T.K., Champagne, D.E., Walker, F.A., Montfort, W.R., 2000. Kinetics and equilibria in ligand binding by nitrophorins 1–4: evidence for stabilization of a nitric oxide-ferriheme complex through a ligand induced conformational trap. Biochemistry 39, 10118–10131.PubMedCrossRefGoogle Scholar
  4. Andersen, J.F., Francischetti, I.M., Valenzuela, J.G., Schuck, P., Ribeiro, J.M., 2003. Inhibition of hemostasis by a high affinity biogenic amine-binding protein from the saliva of a blood-feeding insect. J. Biol. Chem. 278, 4611–4617.PubMedCrossRefGoogle Scholar
  5. Andersen, J.F., Gudderra, N.P., Francischetti, I.M., Valenzuela, J.G., Ribeiro, J.M., 2004. Recognition of anionic phospholipid membranes by an antihemostatic protein from a blood-feeding insect. Biochemistry 43, 6987–6994.PubMedCrossRefGoogle Scholar
  6. Andersen, J.F., Montfort, W.R., 2000. The crystal structure of nitrophorin 2. A trifunctional antihemostatic protein from the saliva of Rhodnius prolixus . J. Biol. Chem. 275, 30496–30503.PubMedCrossRefGoogle Scholar
  7. Anderson, J.M., Oliveira, F., Kamhawi, S., Mans, B.J., Reynoso, D., Seitz, A.E., Lawyer, P., Garfield, M., Pham, M., Valenzuela, J.G., 2006. Comparative salivary gland transcriptomics of sandfly vectors of visceral leishmaniasis. BMC Genomics 7, 52.PubMedCrossRefGoogle Scholar
  8. Andersen, J.F., Pham, V.M., Meng, Z., Champagne, D.E., Ribeiro, J.M., 2009. Insight into the sialome of the Black Fly, Simulium vittatum. J. Proteome Res. 8, 1474–1488.PubMedCrossRefGoogle Scholar
  9. Andersen, J.F., Weichsel, A., Balfour, C.A., Champagne, D.E., Montfort, W.R., 1998. The crystal structure of nitrophorin 4 at 1.5 A resolution: transport of nitric oxide by a lipocalin-based heme protein. Structure 6, 1315–1327.PubMedCrossRefGoogle Scholar
  10. Araujo, R.N., Soares, A.C., Paim, R.M., Gontijo, N.F., Gontijo, A.F., Lehane, M.J., Pereira, M.H., 2009. The role of salivary nitrophorins in the ingestion of blood by the triatomine bug Rhodnius prolixus (Reduviidae: Triatominae). Insect Biochem. Mol. Biol .39, 83–89.PubMedCrossRefGoogle Scholar
  11. Arcá, B., Lombardo, F., de Lara Capurro, M., della Torre, A., Dimopoulos, G., James, A.A., Coluzzi, M., 1999. Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. U.S.A. 96, 1516–1521.PubMedCrossRefGoogle Scholar
  12. Arcà, B., Lombardo, F., Lanfrancotti, A., Spanos, L., Veneri, M., Louis, C., Coluzzi, M., 2002. A cluster of four D7-related genes is expressed in the salivary glands of the African malaria vector Anopheles gambiae. Insect Mol. Biol. 11, 47–55.PubMedCrossRefGoogle Scholar
  13. Assumpção, T.C., Francischetti, I.M., Andersen, J.F., Schwarz, A., Santana, J.M., Ribeiro, J.M., 2008. An insight into the sialome of the blood-sucking bug Triatoma infestans, a vector of Chagas’ disease. Insect Biochem. Mol. Biol. 38, 213–232.PubMedCrossRefGoogle Scholar
  14. Beerntsen, B.T., Champagne, D.E., Coleman, J.L., Campos, Y.A., James, A.A., 1999. Characterization of the Sialokinin I gene encoding the salivary vasodilator of the yellow fever mosquito, Aedes aegypti. Insect Mol. Biol. 8, 459–467.PubMedCrossRefGoogle Scholar
  15. Bergman, D.K., 1996. Mouthparts and feeding mechanisms of haematophagous arthropods, in: Wikel, S.K. (Ed.), The Immunology of Host-Ectoparasitic Arthropod Relationships. CAB International, Wallingford, pp. 30–61.Google Scholar
  16. Bowman, A.S., Dillwith, J.W., Sauer, J.R., 1996. Tick salivary prostaglandins: presence, origin, and significance. Parasitol. Today 12, 388–395.PubMedCrossRefGoogle Scholar
  17. Bowman, A.S., Gengler, C.L., Surdick, M.R., Zhu, K., Essenberg, R.C., Sauer, J.R., Dillwith, J.W., 1997. A novel phospholipase A2 activity in saliva of the lone star tick, Amblyomma americanum (L.). Exp. Parasitol. 87, 121–132.PubMedCrossRefGoogle Scholar
  18. Bowman, A.S., Sauer, J.R., Neese, P.A., Dillwith, J.W., 1995. Origin of arachidonic acid in the salivary glands of the lone star tick, Amblyomma americanum. Insect Biochem. Mol. Biol. 25, 225–233.PubMedCrossRefGoogle Scholar
  19. Brossard, M., Wikel, S.K., 2004. Tick immunobiology. Parasitology 129(Suppl), S161–S176.PubMedCrossRefGoogle Scholar
  20. Calvo, E., Dao, A., Pham, V.M., Ribeiro, J.M., 2007. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. Insect Biochem. Mol. Biol. 37, 164–175.PubMedCrossRefGoogle Scholar
  21. Calvo, E., deBianchi, A.G., James, A.A., Marinotti, O., 2002. The major acid soluble proteins of adult female Anopheles darlingi salivary glands include a member of the D7-related family of proteins. Insect Biochem. Mol. Biol. 32, 1419–1427.PubMedCrossRefGoogle Scholar
  22. Calvo, E., Mans, B.J., Andersen, J.F., Ribeiro, J.M., 2006. Function and evolution of a mosquito salivary protein family. J. Biol. Chem. 281, 1935–1942.PubMedCrossRefGoogle Scholar
  23. Calvo, E., Mans, B.J., Ribeiro, J.M., Andersen, J.F., 2009. Multifunctionality and mechanism of ligand binding in a mosquito anti-inflammatory protein. Proc. Natl. Acad. Sci. U.S.A. 106, 3728–3733.PubMedCrossRefGoogle Scholar
  24. Campbell, C.L., Vandyke, K.A., Letchworth, G.J., Drolet, B.S., Hanekamp, T., Wilson, W.C., 2005. Midgut and salivary gland transcriptomes of the arbovirus vector Culicoides sonorensis (Diptera: Ceratopogonidae). Insect Mol. Biol. 14, 121–136.PubMedCrossRefGoogle Scholar
  25. Champagne, D., 2005. Antihemostatic molecules from saliva of blood-feeding arthropods. Pathophysiol. Haemost. Thromb. 34, 221–227PubMedCrossRefGoogle Scholar
  26. Champagne, D.E., Ribeiro, J.M., 1994. Sialokinin I and II: vasodilatory tachykinins from the yellow fevermosquito Aedes aegypti. Proc. Natl. Acad. Sci. U.S.A. 91, 138–142.PubMedCrossRefGoogle Scholar
  27. Champagne, D.E., Nussenzveig, R.H., Ribeiro, J.M., 1995. Purification, partial characterization, and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood-sucking insect Rhodnius prolixus. J. Biol. Chem. 270, 8691–8695.PubMedCrossRefGoogle Scholar
  28. Cupp, M.S., Ribeiro, J.M., Champagne, D.E., Cupp, E.W., 1998. Analyses of cDNA and recombinant protein for a potent vasoactive protein in saliva of a blood-feeding black fly, Simulium vittatum. J. Exp. Biol. 201, 1553–1561.PubMedGoogle Scholar
  29. Cupp, M.S., Ribeiro, J.M.C., Cupp, E.W., 1994. Vasodilative activity in black fly salivary glands. Am. J. Trop. Med. Hyg. 50, 241–246.PubMedGoogle Scholar
  30. Dickinson, R.G., O’Hagan, J.E., Shotz, M., Binnington, K.C., Hegarty, M.P., 1976. Prostaglandin in the saliva of the cattle tick Boophilus microplus. Aust. J. Exp. Biol. Med. Sci. 54, 475–486.PubMedCrossRefGoogle Scholar
  31. Doolittle, R.F., 2009. Step-by-step evolution of vertebrate blood coagulation. Cold Spring Harbor Symp. Quant. Biol. [Epub ahead of print]. doi: 10.1101/sqb.2009.74.001Google Scholar
  32. Doolittle, R.F., Feng, D.F., 1987. Reconstructing the evolution of vertebrate blood coagulation from a consideration of the amino acid sequences of clotting proteins. Cold Spring Harbor Symp. Quant. Biol. LII, 869–874.CrossRefGoogle Scholar
  33. Francischetti, I.M., Ribeiro, J.M., Champagne, D., Andersen, J., 2000. Purification, cloning, expression, and mechanism of action of a novel platelet aggregation inhibitor from the salivary gland of the bloodsucking bug, Rhodnius prolixus. J. Biol. Chem. 275, 12639–12650.PubMedCrossRefGoogle Scholar
  34. Francischetti, I.M., Sa-Nunes, A., Mans, B.J., Santos, I.M., Ribeiro, J.M., 2009. The role of saliva in tick feeding. Front. Biosci. 14, 2051–2088.PubMedCrossRefGoogle Scholar
  35. Francischetti, I.M., Valenzuela, J.G., Pham, V.M., Garfield, M.K., Ribeiro ,J.M., 2002. Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector Anopheles gambiae. J. Exp. Biol. 205, 2429–2451.PubMedGoogle Scholar
  36. Fry, B.G., Roelants, K., Champagne, D.E., Scheib, H., Tyndall, J.D., King, G.F., Nevalainen, T.J., Norman, J.A., Lewis, R.J., Norton, R.S., Renjifo, C., de la Vega, R.C., 2009. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu. Rev. Genomics Hum. Genet. 10, 483–511.PubMedCrossRefGoogle Scholar
  37. Gillett, J.D., 1967. Natural selection and feeding speed in a blood-sucking insect. Proc. Roy. Soc. Lond. B. Biol. Sci. 167, 316–329.CrossRefGoogle Scholar
  38. Golodne, D.M., Monteiro, R.Q., Graca-Souza, A.V., Silva-Neto, M.A., Atella, G.C., 2003. Lysophosphatidylcholine acts as an anti-hemostatic molecule in the saliva of the blood-sucking bug Rhodnius prolixus. J. Biol. Chem. 278, 27766–27771.PubMedCrossRefGoogle Scholar
  39. Grevelink, S.A., Osborne, Loscalzo, J. Lerner, E.A., 1995. Vasorelaxant and second messenger effects of maxadilan. J. Pharmacol. Exp. Ther. 272, 33–37.PubMedGoogle Scholar
  40. Grevelink, S.A., Youssef, D.E., Loscalzo, J., Lerner, E.A., 1993. Salivary-gland extracts from the deerfly contain a potent inhibitor of platelet aggregation. Proc. Natl. Acad. Sci. U.S.A. 90, 9155–9158.PubMedCrossRefGoogle Scholar
  41. Grimaldi, D., Engel, M. 2005. Evolution of the insects. Cambridge University Press, New York.Google Scholar
  42. Gudderra, N.P., Ribeiro, J.M., Andersen, J.F., 2005. Structural determinants of factor IX(a) binding in nitrophorin 2, a lipocalin inhibitor of the intrinsic coagulation pathway. J. Biol. Chem. 280, 25022–25028.PubMedCrossRefGoogle Scholar
  43. Higgs, G.A., Vane, J.R., Hart, R.J., Porter, C., Wilson, R.G., 1976. Prostaglandins in the saliva of the cattle tick, Boophilus microplus (Canestrini) (Acarina: Ixodidae). Bull. Entomol. Res. 66, 665–670.CrossRefGoogle Scholar
  44. Hollander, A.L., Wright, R.E., 1980. Impact of tabanids on cattle: blood meal size and preferred feeding sites. J. Econ. Entomol. 73, 431–433PubMedGoogle Scholar
  45. Isawa, H., Yuda, M., Yoneda, K., Chinzei, Y., 2000. The insect salivary protein, prolixin-S, inhibits factor IXa generation and Xase complex formation in the blood coagulation pathway. J. Biol. Chem. 275, 6636–6641.PubMedCrossRefGoogle Scholar
  46. James, A.A., Blackmer, K., Marinotti, O., Ghosn, C.R., Racioppi, J.V., 1991. Isolation and characterization of the gene expressing the major salivary gland protein of the female mosquito, Aedes aegypti. Mol. Biochem. Parasitol. 44, 245–253.PubMedCrossRefGoogle Scholar
  47. Jones, D., 1998. The neglected saliva: medically important toxins in the saliva of human lice. Parasitology 116(Suppl), S73–S81.PubMedCrossRefGoogle Scholar
  48. Kazimírová, M., Šulanová, M., Kozánek, M., Takác, P., Labuda, M., Nuttall, P.A., 2001. Identification of anticoagulant activities in salivary gland extracts of four horsefly species (Diptera: Tabanidae). Haemostasis 31, 294–305.PubMedGoogle Scholar
  49. Kemp, D.H., Hales, J.R., Schleger, A.V. Fawcett, A.A., 1983. Comparison of cutaneous hyperemia in cattle elicited by larvae of Boophilus microplus and by prostaglandins and other mediators. Experientia 39, 725–727.PubMedCrossRefGoogle Scholar
  50. Koh, C.Y., Kini, R.M. 2009. Molecular diversity of anticoagulants from haematophagous animals. Thromb. Haemost. 102, 437–453.PubMedGoogle Scholar
  51. Lanzaro, G.C., Lopes, A.H., Ribeiro, J.M., Shoemaker, C.B., Warburg, A., Soares, M., Titus, R.G., 1999. Variation in the salivary peptide, maxadilan, from species in the Lutzomyia longipalpis complex. Insect Mol. Biol. 8, 267–275.PubMedCrossRefGoogle Scholar
  52. Law, J.H., Ribeiro, J.M., Wells, M.A., 1992. Biochemical insights derived from insect diversity. Annu. Rev. Biochem. 61, 87–111.PubMedCrossRefGoogle Scholar
  53. Lerner, E.A., Ribeiro, J.M., Nelson, R.J., Lerner, M.R., 1991. Isolation of maxadilan, a potent vasodilatory peptide from the salivary glands of the sand fly Lutzomyia longipalpis . J. Biol. Chem. 266, 11234–11236.PubMedGoogle Scholar
  54. Lerner, E.A., Shoemaker, C.B., 1992. Maxadilan: cloning and functional expression of the gene encoding this potent vasodilator peptide. J. Biol. Chem. 267, 1062–1066.PubMedGoogle Scholar
  55. Lu, S.M,. Lu, W., Qasim, M.A., Anderson, S., Apostol, I., Ardelt, W., Bigler, T., Chiang, Y.W., Cook, J., James, M.N., Kato, I., Kelly, C., Kohr, W., Komiyama, T., Lin, T.Y., Ogawa, M., Otlewski, J., Park, S.J., Qasim, S., Ranjbar, M., Tashiro, M., Warne, N., Whatley, H., Wieczorek, A., Wieczorek, M., Wilusz, T., Wynn, R., Zhang, W., Laskowski, M., Jr., 2001. Predicting the reactivity of proteins from their sequence alone: Kazal family of protein inhibitors of serine proteinases. Proc. Natl. Acad. Sci. U.S.A. 98, 1410–1415.PubMedCrossRefGoogle Scholar
  56. Ma, D., Wang, Y., Yang, H., Wu, J., An, S., Gao, L., Xu, X., Lai, R., 2009. Anti-thrombosisrepertoire of blood-feeding horsefly salivary glands. Mol. Cell Proteomics 8, 2071–2079.PubMedCrossRefGoogle Scholar
  57. Maes, E.M., Weichsel, A., Andersen, J.F., Shepley, D., Montfort, W.R., 2004. Role of binding site loops in controlling nitric oxide release: structure and kinetics of mutant forms of nitrophorin 4. Biochemistry 43, 6679–6690.PubMedCrossRefGoogle Scholar
  58. Mans, B.J., Calvo, E., Ribeiro, J.M., Andersen, J.F., 2007. The crystal structure of D7r4, a salivary biogenic amine-binding protein from the malaria mosquito Anopheles gambiae. J. Biol. Chem. 282, 36626–36633.PubMedCrossRefGoogle Scholar
  59. Mans, B.J., Ribeiro, J.M., 2008a. Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins. Insect Biochem. Mol. Biol. 38, 841–852.PubMedCrossRefGoogle Scholar
  60. Mans, B.J., Ribeiro, J.M., 2008b. A novel clade of cysteinyl leukotriene scavengers in soft ticks. Insect Biochem. Mol. Biol. 38, 862–870.PubMedCrossRefGoogle Scholar
  61. Mans, B.J., Ribeiro, J.M., Andersen, J.F., 2008. Structure, function, and evolution of biogenic amine-binding proteins in soft ticks. J. Biol. Chem. 283, 18721–18733.PubMedCrossRefGoogle Scholar
  62. Mesquita, R.D., Carneiro, A.B., Bafica, A., Gazos-Lopes, F., Takiya, C.M., Souto-Padron, T., Vieira, D.P., Ferreira-Pereira, A., Almeida, I.C., Figueiredo, R.T., Porto, B.N., Bozza, M.T., Graça-Souza, AV., Lopes, A.H., Atella, G.C., Silva-Neto, M.A., 2008. Trypanosoma cruzi infection is enhanced by vector saliva through immunosuppressant mechanisms mediated by lysophosphatidylcholine. Infect. Immun. 76, 5543–5552.PubMedCrossRefGoogle Scholar
  63. Milleron, R.S., Mutebi, J.P., Valle, S., Montoya, A., Yin, H., Soong, L., Lanzaro, G.C., 2004. Antigenic diversity in maxadilan, a salivary protein from the sand fly vector of American visceral leishmaniasis. Am. J. Trop. Med. Hyg. 70, 286–293.PubMedGoogle Scholar
  64. Moreira, M.F., Coelho, H.S., Zingali, R.B., Oliveira, P.L., Masuda, H., 2003. Changes in salivary nitrophorin profile during the life cycle of the blood-sucking bug Rhodnius prolixus. Insect Biochem. Mol. Biol. 33, 23–28.PubMedCrossRefGoogle Scholar
  65. Moro, O., Lerner, E.A., 1997. Maxadilan, the vasodilator from sand flies, is a specific pituitary adenylate cyclase activating peptide type I receptor agonist. J. Biol. Chem. 272, 966–970.PubMedCrossRefGoogle Scholar
  66. Nussenzveig, R.H., Bentley, D.L., Ribeiro, J.M., 1995. Nitric oxide loading of the salivary nitric-oxide-carrying hemoproteins (nitrophorins) in the blood-sucking bug Rhodnius prolixus. J. Exp. Biol. 198, 1093–1098.PubMedGoogle Scholar
  67. Oldham, N.J., Lissina, O., Nunn, M.A., Paesen, G.C., 2003. Non-denaturing electrospray ionisation-mass spectrometry reveals ligand selectivity in histamine-binding protein RaHBP2. Org. Biomol. Chem. 1, 3645–3646.PubMedCrossRefGoogle Scholar
  68. Paesen, G.C., Adams, P.L., Harlos, K., Nuttall, P.A., Stuart, D.I., 1999. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol. Cell 3, 661–671.PubMedCrossRefGoogle Scholar
  69. Paesen, G.C., Adams, P.L., Nuttall, P.A., Stuart, D.L., 2000. Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim. Biophys. Acta 1482, 92–101.PubMedCrossRefGoogle Scholar
  70. Paesen, G.C., Siebold, C., Dallas, M.L., Peers, C., Harlos, K., Nuttall, P.A., Nunn, M.A., Stuart, D.I., Esnouf, R.M., 2009. An ion-channel modulator from the saliva of the brown ear tick has a highly modified Kunitz/BPTI structure. J. Mol. Biol. 389, 734–747.PubMedCrossRefGoogle Scholar
  71. Perez de Leon, A.A., Ribeiro, J.M., Tabachnick, W.J., Valenzuela, J.G., 1997. Identification of a salivary vasodilator in the primary North American vector of bluetongue viruses, Culicoides variipennis. Am. J. Trop. Med. Hyg. 57, 375–381.Google Scholar
  72. Rai, K.S., Black, W.C., 4th., 1999. Mosquito genomes: structure, organization, and evolution. Adv. Genet. 41, 1–33.PubMedCrossRefGoogle Scholar
  73. Rajská, P., Knezl, V., Kazimírová, M., Takáč, P., Roller, L., Vidlička, L., Čiampor, F., Labuda, M., Weston-Davies, W., Nuttall, P.A. 2007. Effects of horsefly (Tabanidae) salivary gland extracts on isolated perfused rat heart. Med. Vet. Entomol. 21, 384–389.PubMedCrossRefGoogle Scholar
  74. Rajská, P., Pechánová, O., Takác, P., Kazimírová, M., Roller, L., Vidlicka, L., Ciampor, F., Labuda, M., Nuttall, P.A., 2003. Vasodilatory activity in horsefly and deerfly salivary glands. Med. Vet. Entomol. 17, 395–402.PubMedCrossRefGoogle Scholar
  75. Reddy, V.B., Kounga, K., Mariano, F., Lerner, E.A., 2000. Chrysoptin is a potent glycoprotein IIb/IIIa fibrinogen receptor antagonist present in salivary gland extracts of the deerfly. J. Biol. Chem. 275, 15861–15867.PubMedCrossRefGoogle Scholar
  76. Ribeiro, J.M.C., 1987. Role of saliva in blood-feeding by arthropods. Annu. Rev. Entomol. 32, 463–478. PubMedCrossRefGoogle Scholar
  77. Ribeiro, J.M., 1992. Characterization of a vasodilator from the salivary glands of the yellow fever mosquito Aedes aegypti. J. Exp. Biol. 165, 61–71.PubMedGoogle Scholar
  78. Ribeiro, J.M.C. 1995. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? Infect Agents Dis. 4, 143–152.PubMedGoogle Scholar
  79. Ribeiro, J.M., 1996. NAD(P)H-dependent production of oxygen reactive species by the salivary glands of the mosquito Anopheles albimanus. Insect Biochem. Mol. Biol. 26, 715–720.PubMedCrossRefGoogle Scholar
  80. Ribeiro, J.M., 2000. Blood-feeding in mosquitoes: probing time and salivary gland anti-haemostatic activities in representatives of three genera (Aedes, Anopheles, Culex). Med. Vet. Entomol. 14, 142–148.PubMedCrossRefGoogle Scholar
  81. Ribeiro, J.M., Charlab, R., Pham, V.M., Garfield, M., Valenzuela, J.G., 2004. An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus. Insect Biochem. Mol. Biol. 34, 543–563.PubMedCrossRefGoogle Scholar
  82. Ribeiro, J.M., Evans, P.M., MacSwain, J.L., Sauer, J.. 1992. Amblyomma americanum: characterization of salivary prostaglandins E2 and F2 α by RP-HPLC/bioassay and gas chromatography-mass spectrometry. Exp. Parasitol. 74, 112–116.PubMedCrossRefGoogle Scholar
  83. Ribeiro, J.M.C., Francischetti, I.M.B., 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu. Rev. Entomol. 48, 73–88.PubMedCrossRefGoogle Scholar
  84. Ribeiro, J.M., Hazzard, J.M., Nussenzveig, R.H., Champagne, D.E., Walker, F.A., 1993. Reversible binding of nitric oxide by a salivary heme protein from a bloodsucking insect. Science 260, 539–541.PubMedCrossRefGoogle Scholar
  85. Ribeiro, J.M., Katz, O., Pannell, L.K., Waitumbi, J., Warburg, A., 1999. Salivary glands of the sand fly Phlebotomus papatasi contain pharmacological amounts of adenosine and 5-AMP. J. Exp. Biol. 202, 1551–1559.PubMedGoogle Scholar
  86. Ribeiro, J.M., Marinotti, O., Gonzales, R., 1990. A salivary vasodilator in the blood-sucking bug, Rhodnius prolixus. Br. J. Pharmacol. 101, 932–936.PubMedCrossRefGoogle Scholar
  87. Ribeiro, J.M., Nussenzveig, R.H., 1993. Nitric oxide synthase activity from a hematophagous insect salivary gland. FEBS Lett. 330, 165–168.PubMedCrossRefGoogle Scholar
  88. Ribeiro, J.M., Schneider, M., Guimarães, J.A., 1995. Purification and characterization of prolixin S (nitrophorin 2), the salivary anticoagulant of the blood-sucking bug Rhodnius prolixus. Biochem. J. 308, 243–249.PubMedGoogle Scholar
  89. Ribeiro, J.M., Schneider, M., Isaias, T., Jurberg, J., Galvao, C., Guimaraes, J.A., 1998. Role of salivary antihemostatic components in blood feeding by triatomine bugs (Heteroptera). J. Med. Entomol. 35, 599–610.PubMedGoogle Scholar
  90. Ribeiro, J.M., Valenzuela, J.G., 1999. Purification and cloning of the salivary peroxidase/catechol oxidase of the mosquito Anopheles albimanus. J. Exp. Biol. 202, 809–816.PubMedGoogle Scholar
  91. Ribeiro, J.M., Walker, F.A., 1994. High affinity histamine- binding and antihistaminic activity of the salivary nitric oxide-carrying heme protein (nitrophorin) of Rhodnius prolixus. J. Exp. Med. 180, 2251–2257.PubMedCrossRefGoogle Scholar
  92. Sangamnatdej, S., Paesen, G.C., Slovak, M., Nuttall, P.A., 2002. A high affinity serotonin- and histamine-binding lipocalin from tick saliva. Insect Mol. Biol. 11, 79–86.PubMedCrossRefGoogle Scholar
  93. Santos, A., Ribeiro, J.M., Lehane, M.J., Gontijo, N.F., Viols, A.B., Sant’Anna, M.R., Nascimento, Araujo, R., Grisard, E.C., Pereira, M.H., 2007. The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera: Triatominae). Insect Biochem. Mol. Biol. 37, 702–712.PubMedCrossRefGoogle Scholar
  94. Sarkis, J.J., Guimarães, J.A., Ribeiro, J.M., 1986. Salivary apyrase of Rhodnius prolixus: kinetics and purification. Biochem. J. 233, 885–891.PubMedGoogle Scholar
  95. Schneider, B.S., Higgs, S., 2008. The enhancement of arbovirus transmission and disease by mosquito saliva is associated with modulation of the host immune response. Trans. R. Soc. Trop. Med. Hyg. 102, 400–408.PubMedCrossRefGoogle Scholar
  96. Sun, J., Yamaguchi, M., Yuda, M., Miura, K., Takeya, H., Hirai, M., Matsuoka, H., Ando, K., Watanabe, T., Suzuki, K., Chinzei, Y., 1996. Purification, characterization and cDNA cloning of a novel anticoagulant of the intrinsic pathway, (prolixin-S) from salivary glands of the blood sucking bug, Rhodnius prolixus. Thromb. Haemost. 75, 573–577.PubMedGoogle Scholar
  97. Sun, J., Yuda, M., Miura, K., Chinzei, Y., 1998. Characterization and cDNA cloning of a hemoprotein in the salivary glands of the blood-sucking insect, Rhodnius prolixus. Insect Biochem. Mol. Biol. 28, 191–200.PubMedCrossRefGoogle Scholar
  98. Takac, P., Nunn, M.A., Meszaros, J., Pechanova, O., Vrbjar, N., Vlasakova, P., Kozanek, M., Kazimirova, M., Hart, G., Nuttall, P.A., Labuda, M., 2006. Vasotab, a vasoactive peptide from horse fly Hybomitra bimaculata (Diptera: Tabanidae) salivary glands. J. Exp. Biol. 209, 343–352PubMedCrossRefGoogle Scholar
  99. Titus, R.G., Bishop, J.V., Mejia, J.S., 2006. The immunomodulatory factors of arthropod saliva and the potential for these factors to serve as vaccine targets to prevent pathogen transmission. Parasite Immunol. 28, 131–141.PubMedGoogle Scholar
  100. Valenzuela, J.G., 2002. High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochem. Mol. Biol. 32, 1199–1209.PubMedCrossRefGoogle Scholar
  101. Valenzuela, J.G., Charlab, R., Gonzalez, E.C., de Miranda-Santos, I.K., Marinotti, O., Francischetti, I.M., Ribeiro, J.M., 2002. The D7 family of salivary proteins in blood sucking diptera. Insect Mol. Biol. 11, 149–155.PubMedCrossRefGoogle Scholar
  102. Valenzuela, J.G., Francischetti, I.M., Pham, V.M., Garfield, M.K., Ribeiro, J.M., 2003. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem. Mol. Biol. 33, 717–732.PubMedCrossRefGoogle Scholar
  103. Valenzuela, J.G., Ribeiro, J.M., 1998. Purification and cloning of the salivary nitrophorin from the hemipteran Cimex lectularius. J. Exp. Biol. 201, 2659–2664.PubMedGoogle Scholar
  104. Valenzuela, J.G., Walker, F.A., Ribeiro, J.M., 1995. A salivary nitrophorin (nitric-oxide-carrying hemoprotein) in the bedbug Cimex lectularius. J. Exp. Biol. 198, 1519–1526.PubMedGoogle Scholar
  105. Weichsel, A., Andersen, J.F., Champagne, D.E., Walker, F.A., Montfort, W.R., 1998. Crystal structures of a nitric oxide transport protein from a blood-sucking insect. Nat. Struct. Biol. 5, 304–309.PubMedCrossRefGoogle Scholar
  106. Weichsel, A., Andersen, J.F., Roberts, S.A., Montfort, W.R., 2000. Nitric oxide binding to nitrophorin 4 induces complete distal pocket burial. Nat. Struct. Biol. 7, 551–554.PubMedCrossRefGoogle Scholar
  107. Weichsel, A., Maes, E.M., Andersen, J.F., Valenzuela, J.G., Shokhireva, T., Walker, F.A., Montfort, W.R., 2005. Heme-assisted S-nitrosation of a proximal thiolate in a nitric oxide transport protein. Proc. Natl. Acad. Sci. U.S.A. 102, 594–599.PubMedCrossRefGoogle Scholar
  108. Wynn, R., Zhang, W., Laskowski, M., Jr., 2001. Predicting the reactivity of proteins from their sequence alone: Kazal family of protein inhibitors of serine proteinases. Proc. Natl. Acad. Sci. U.S.A. 98, 1410–1415.PubMedCrossRefGoogle Scholar
  109. Yuda, M., Higuchi, K., Sun, J., Kureishi, Y., Ito, M., Chinzei, Y., 1997. Expression, reconstitution and characterization of prolixin-S as a vasodilator – a salivary gland nitric-oxide-binding hemoprotein of Rhodnius prolixus. Eur. J. Biochem. 249, 337–342.PubMedCrossRefGoogle Scholar
  110. Yuda, M., Hirai, M., Miura, K., Matsumura, H., Ando, K., Chinzei, Y., 1996. cDNA cloning, expression and characterization of nitric-oxide synthase from the salivary glands of the blood-sucking insect Rhodnius prolixus. Eur. J. Biochem. 242, 807–812.PubMedCrossRefGoogle Scholar
  111. Xu, X., Yang, H., Ma, D., Wu, J., Wang, Y., Song, Y., Wang, X., Lu, Y., Yang, J., Lai, R.. 2008. Toward an understanding of the molecular mechanism for successful blood feeding by coupling proteomics analysis with pharmacological testing of horsefly salivary glands. Mol. Cell. Proteomics 7, 582–590.PubMedGoogle Scholar
  112. Zhu, K., Bowman, A.S., Dillwith, J.W., Sauer, J.R., 1998. Phospholipase A2 activity in salivary glands and saliva of the lone star tick (Acari: Ixodidae) during tick feeding. J. Med. Entomol. 35, 500–504.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute of ZoologySlovak Academy of SciencesBratislavaSlovakia
  2. 2.Department of Entomology, and Center for Tropical and Emerging Global DiseasesUniversity of GeorgiaAthensUSA

Personalised recommendations