Advertisement

Hypertensive and Hypotensive Snake Venom Components

  • Avner BdolahEmail author
Chapter

Abstract

Most snake venoms of Viperidae induce a fall in blood pressure following envenomation. However the mechanism(s) involved in the hypotensive effects of the venoms are largely unknown. VEGF-like peptides, which affect vascular permeability, have been described in Viperidae as well as in Elapidae venoms. The following chapter reviews some of the cardiovascular toxins that have been isolated and characterized in snake venoms. This includes the sarafotoxins, which are the most potent hypertensive peptides, as well as groups of hypotensive peptides like the natriuretic peptides and calcium channel blockers. The extensive research that has been carried out is now providing us with some new options to treat diseases.

Keywords

Atrial Natriuretic Peptide Snake Venom Venom Gland Porcine Endothelial Cell Isolate Heart Preparation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdel-Latif, A.A., Ding, K.H., Akhtar, R.A., Yousufzai, S.Y.K., 1996. Effects of endothelin on phospholipases and generation of second messengers in cat iris sphincter and SV-CISM-2 cells. J. Lipid Mediators. Cell Signal. 14, 147–155.CrossRefGoogle Scholar
  2. Amininasab, M., Elmi, M.M., Endlich, N., Endlich, K., Parekh, N., Naderi-Manesh, H., Schaller, J., Mostafavi, H., Sattler, M., Sarbolouki, M.N., Muhle-Goll, C., 2004. Functional and structural characterization of a novel member of the natriuretic family of peptides from the venom of Pseudocerastes persicus. FEBS Lett. 557, 104–108.PubMedCrossRefGoogle Scholar
  3. Arai, H., Hori, S., Aramori, I., Ohkubo, H., Nakanishi, S., 1990. Cloning and expression of a cDNA encoding an endothelin receptor. Nature 348, 730–732.PubMedCrossRefGoogle Scholar
  4. Arinami, T., Ishikawa, M., Inoue, A., Yanagisawa, M., Masaki, T., Yoshida, M.C., Hamaguchi, H., 1991. Chromosomal assignments of the human endothelin family genes – the endothelin-I gene (Edni) to 6P23-P24, the endothelin-2 gene (Edn2) to Ip34, and the endothelin-3 gene (Edn3) to 20Q13.2-Q13.3. Am. J. Human Genet. 48, 990–996.Google Scholar
  5. Aubert, J.D., Juillerat-Jeanneret, L., 2009. Therapeutic potential of endothelin receptor modulators: lessons from human clinical trials. Expert Opin. Ther. Targets 13, 1069–1084.PubMedCrossRefGoogle Scholar
  6. Bazza, A., Marrakchi, N., El Ayeb, M., Sanz, L., Calvete, J.J., 2005. Snake venomics: comperative analysis of venom proteomes of the Tunisian snakes Cerastes cerastes, Cerastes vipera and Macrovipera lebetina. Proteomics 4, 4223–4235.CrossRefGoogle Scholar
  7. Barton, M., Yanagisawa, M., 2008. Endothelin: 20 years from discovery to therapy. Can. J. Physiol. Pharmacol. 86, 485–498.PubMedCrossRefGoogle Scholar
  8. Battistini, B., Jeng, A.Y., 2001. Endothelin-converting enzyme inhibitors and their effects, in: Warner, T.D. (Ed.), Endothelin and its Inhibitors. Springer, Berlin, pp. 155–208.CrossRefGoogle Scholar
  9. Bdolah, A., 2010. Sarafotoxins, the snake venom homologs of the endothelins, in: Mackessy, S.P. (Ed.), Handbook of Venom and Toxins of Reptiles. CRC Press, Roca Raton, pp. 303–315.Google Scholar
  10. Bdolah, A., Kochva, E., Ovadia, M., Kinamon, S., Wollberg, Z., 1997. Resistance of the Egyptian mongoose to sarafotoxins. Toxicon 35, 1251–1261.PubMedCrossRefGoogle Scholar
  11. Bdolah, A., Wollberg, Z., Ambar, I., Kloog, Y., Sokolovsky, M., Kochva, E., 1989a. Disturbances in the cardiovascular system caused by endothelin and sarafotoxin. Biochem. Pharmacol. 38, 3145–3146.PubMedCrossRefGoogle Scholar
  12. Bdolah, A., Wollberg, Z., Fleminger, G., Kochva, E., 1989b. SRTX-d, a new native peptide of the endothelin / sarafotoxin family. FEBS Lett. 256, 1–3.PubMedCrossRefGoogle Scholar
  13. Becker, A., Dowdle, E.B., Hechler, U., Kauser, K., Donner, P., Schleuning, W.D., 1993. Bibrotoxin, a novel member of the endothelin/sarafotoxin peptide family, from the venom of the burrowing asp Atractaspis bibroni. FEBS Lett. 315, 100–103.PubMedCrossRefGoogle Scholar
  14. Bicher, H.I., Roth, M., Gitter, S., 1966. Neurotoxic activity of Vipera palestinae venom – depression of central autonomic vasoregulatory mechanisms. Med. Pharmacol. Exp. 14, 349–359.Google Scholar
  15. Borgheresi, R.A.M.B., Leroy, J.M.G., Yogi, A., DosSantos, R.A., Breno, M.C., Tostes, R.C., 2006. Pharmacologic and molecular characterization of the vascular ETA receptor in the venomous snake Bothrops jararaca. Exper. Biol. Med. 231, 729–735.Google Scholar
  16. Cushman, D.W., Ondetti, M.A., 1991. History of the design of captopril and related inhibitors of angiotensin converting enzyme. Hypertension 17, 589–592.PubMedCrossRefGoogle Scholar
  17. De Bold, A.J., Borenstein, H.B., Veress, A.T., Sonnenberg, H., 1981. A rapid and potent natriuretic response to intravenous injection of atrial myocardial extract in rat. Life Sci. 28, 89–94.PubMedCrossRefGoogle Scholar
  18. de Plater, G.M., Martin, R.L., Milburn, P.J., 1998. A C-type natriuretic peptide from the venom of the platypus (Ornithorhynchus anatinus): structure and pharmacology. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 120, 99–110.PubMedCrossRefGoogle Scholar
  19. De Weille, J.R., Schweitz, H., Maes, P., Tartar, A., Lazdunski, M., 1991. Calciseptine, a peptide isolated from black mamba venom, is a specific blocker of the L-type calcium channel. Proc. Natl. Acad. Sci. U.S.A. 88, 2437–2440.PubMedCrossRefGoogle Scholar
  20. Ducancel, F., 2005. Endothelin-like peptides. Cell. Mol. Life Sci. 62, 2828–2839.PubMedCrossRefGoogle Scholar
  21. Ducancel, F., Matre, V., Dupont, C., Lajeunesse, E., Wollberg, Z., Bdolah, A., Kochva, E., Boulain, J.C., Menez, A., 1993. Cloning and sequence analysis of cDNAs encoding precursors of sarafotoxins – evidence for an unusual rosary-type organization. J. Biol. Chem. 268, 3052–3055.PubMedGoogle Scholar
  22. Earl, S.T.H., Birrell, G.W., Wallis, T.P., St. Pierre, L.D., Masci, P.P., de Jersey, J., Gorman, J.J., Lavin, M.F., 2006. Post-translational modification accounts for the presence of varied forms of nerve growth factor in Australian elapid snake venoms. Proteomics 6, 6554–6565.PubMedCrossRefGoogle Scholar
  23. Fantini, E., Athias, P., Tirosh, R., Pinson, A., 1996. Effect of TaiCatoxin (TCX) on the electrophysiological, mechanical and biochemical characteristics of spontaneously beating ventricular cardiomyocytes. Mol. Cell. Biochem. 161, 61–66.CrossRefGoogle Scholar
  24. Ferreira, S.H., 2010. From the Bothrops jararaca bradykinin potentiating peptides to angiotensin converting enzyme inhibitors, in: Kini, R.M., K.J. Clemetson, Markland, F.S., McLane, M.A., Morita, T. (Eds.), Toxins and Hemostasis: From Bench to Bedside. Springer, Dordrecht, The Netherlands.Google Scholar
  25. Fry, B.G., 2005. From genome to “venome”: molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Res. 15, 403–420.PubMedCrossRefGoogle Scholar
  26. Fry, B.G., Wickramaratana, J.C., Lemme, S., Beuve, A., Garbers, D., Hodgson, W.C., Alewood, P., 2005. Novel natriuretic peptides from the venom of the inland taipan (Oxyuranus microlepidotus): isolation, chemical and biological characterisation. Biochem. Biophys. Res. Commun. 327, 1011–1015.PubMedCrossRefGoogle Scholar
  27. Gasperetti, J., 1988. Snake of Arabia, in: Buttiker, W., Krupp, F. (Eds.), Fauna of Saudi Arabia. Karger Libri AG, Basel, pp.169–392.Google Scholar
  28. Gilquin, B., Lecoq, A., Desne, F., Guenneugues, M., Zinn-Justin, S., Menez, A., 1999. Conformational and functional variability supported by the BPTI fold: solution structure of the Ca2+ channel blocker calcicludine. Proteins Struc. Func. Gen. 34, 520–532.CrossRefGoogle Scholar
  29. Gutierrez, J.M., 1995. Clinical toxicology of snakebite in Central America, in: Meier, J., White, J. (Eds.), Handbook of Clinical Toxicology of Animal Venoms and Poisons. CRC Press, Roca Raton, 645–665.Google Scholar
  30. Hayashi, M.A.F., Ligny-Lemaire, C., Wollberg, Z., Wery, M., Galat, A., Ogawa, T., Muller, B.H., Lamthanh, H., Doljansky, Y., Bdolah, A., Stocklin, R., Ducancel, F., 2004. Long-sarafotoxins: characterization of a new family of endothelin-like peptides. Peptides 25, 1243–1251.PubMedCrossRefGoogle Scholar
  31. Henry, P.J., Goldie, R.G., 2001. Endothelin receptors, in: Warner, T.D. (Ed.), Endothelin and its Inhibitors. Springer, Berlin, pp. 69–114.CrossRefGoogle Scholar
  32. Higuchi, S., Murayama, N., Saguchi, K., Ohi, H., Fujita, Y., da Silva, N.J., de Siqueira, R.J.B., Lahlou, S., Aird, S.D., 2006. A novel peptide from the ACEI/BPP-CNP precursor in the venom of Crotalus durissus collilineatus. Comp. Biochem. Phys. C. Toxicol. Pharmacol.144, 107–121.CrossRefGoogle Scholar
  33. Inoue, A., Yanagisawa, M., Kimura, S., Kasuya, Y., Miyauchi, T., Goto, K., Masaki, T., 1989. The human endothelin family: three structurally and pharmacologically distinct isopeptides predicted by three separate genes. Proc. Natl. Acad. Sci. U.S.A. 86, 2863–2867.PubMedCrossRefGoogle Scholar
  34. Ismail, M., Al-Ahaidib, M.S., Abdoon, N., Abd-Elsalam, M.A., 2007. Preparation of a novel antivenom against Atractaspis and Walterinnesia venoms. Toxicon 49, 8–18.PubMedCrossRefGoogle Scholar
  35. Joseph, R., Pahri, S., Hodgson, W.C., Kini, R.M., 2004. Hypotensive agents from snake venoms. Curr. Drug Targets – Cardiovasc. Haematol. Disord. 4, 437–459.PubMedCrossRefGoogle Scholar
  36. Joubert, F.J., Taljaard, N., 1980a. The complete primary structures of 2 reduced and S-carboxymethylated Angusticeps-type toxins from Dendroaspis angusticeps (Green Mamba) venom. Biochim. Biophys. Acta 623, 449–456.PubMedCrossRefGoogle Scholar
  37. Joubert, F.J., Taljaard, N., 1980b. The primary structure of a short neurotoxin homolog (S4C8) from Dendroaspis jamesoni kaimosae (Jamesons Mamba) venom. Int. J. Biochem. 12, 567–574.PubMedCrossRefGoogle Scholar
  38. Junqueira de Azevedo, I.L.M., Farsky, S.H.P., Oliveira, M.L.S., Ho, P.L., 2001. Molecular cloning and expression of a functional snake venom vascular endothelium growth factor (VEGF) from the Bothrops insularis pit viper – A new member of the VEGF family of proteins. J. Biol. Chem. 276, 39836–39842.CrossRefGoogle Scholar
  39. Kanaide, H., 1996. Endothelin regulation of vascular tonus. Gen. Pharmacol. 27, 559–563.PubMedCrossRefGoogle Scholar
  40. Karne, S., Jayawickreme, C.K., Lerner, M.R., 1993. Cloning and characterization of an endothelin-3 specific receptor (ET(c) Receptor) from Xenopus-laevis dermal melanophores. J. Biol. Chem. 268, 19126–19133.PubMedGoogle Scholar
  41. Kini, R.M., 2002. Molecular moulds with multiple missions: functional sites in three-finger toxins. Clin. Exp. Pharmacol. Physiol. 29, 815–822.PubMedCrossRefGoogle Scholar
  42. Kini, R.M., Caldwell, R.A., Wu, Q.Y., Baumgarten, C.M., Feher, J.J., Evans, H.J., 1998. Flanking proline residues identify the L-type Ca2+ channel binding site of calciseptine and FS2. Biochemistry 37, 9058–9063.PubMedCrossRefGoogle Scholar
  43. Kitamura, K., Tanaka, T., Kato, J., Ogawa, T., Eto, T., Tanaka, K., 1989. Immunoreactive endothelin in rat kidney inner medulla: marked decrease in spontaneously hypertensive rats. Biochem. Biophys. Res. Commun. 162, 38–44.PubMedCrossRefGoogle Scholar
  44. Kloog, Y., Ambar, I., Sokolovsky, M., Kochva, E., Wollberg, Z., Bdolah, A., 1988. Sarafotoxin, a novel vasoconstrictor peptide: phosphoinositide hydrolysis in rat heart and brain. Science 242, 268–270.PubMedCrossRefGoogle Scholar
  45. Kloog, Y., Bousso-Mittler, D., Bdolah, A., Sokolovsky, M., 1989. Three apparent receptor subtypes for the endothelin/sarafotoxin family. FEBS Lett. 253, 199–202.PubMedCrossRefGoogle Scholar
  46. Kochva, E., Bdolah, A., Wollberg, Z., 1993. Sarafotoxins and endothelins: evolution, structure and function. Toxicon 31, 541–568.PubMedCrossRefGoogle Scholar
  47. Kochva, E., Viljoen, C.C., Botes, D.P., 1982. A new type of toxin in the venom of snakes of the genus Atractaspis (Atractaspidinae). Toxicon 20, 581–592.PubMedCrossRefGoogle Scholar
  48. Landan, G., Bdolah, A., Wollberg, Z., Kochva, E., Graur, D., 1991. Evolution of the sarafotoxin/endothelin superfamily of proteins. Toxicon 29, 237–244.PubMedCrossRefGoogle Scholar
  49. Lee, C.Y.W., Burnett, J.C., 2007. Natriuretic peptides and therapeutic applications. Heart Failure Rev. 12, 131–142.CrossRefGoogle Scholar
  50. Lee, C.Y., Lee, S.Y., 1979. Cardiovascular effects of snake venoms, in: Lee, C.Y. (Ed.), Snake Venoms, Handbook of Experimental Pharmacology (vol. 52). Spriger-Verlag, Berlin, pp. 547–590.CrossRefGoogle Scholar
  51. Lee, S.Y., Lee, C.Y., Chen, Y.M., Kochva, E., 1986. Coronary vasospasm as the primary cause of death due to the venom of the Burrowing Asp, Atractaspis engaddensis. Toxicon 24, 285–291.PubMedCrossRefGoogle Scholar
  52. Lisy, O., Huntley, B.K., McCormick, D.J., Kurlansky, P.A., Burnett, J.C., 2008. Design, synthesis, and actions of a novel chimeric natriuretic peptide: CD-NP. J. Am. Coll. Cardiol. 52, 60–68.PubMedCrossRefGoogle Scholar
  53. Lisy, O., Jougasaki, M., Heublein, D.M., Schirger, J.A., Chen, H.H., Wennberg, P.W., Burnett, J.C., 1999. Renal actions of synthetic dendroaspis natriuretic peptide. Kidney Int. 56, 502–508.PubMedCrossRefGoogle Scholar
  54. Lisy, O., Lainchbury, J.G., Leskinen, H., Burnett, J.C., 2001. Therapeutic actions of a new synthetic vasoactive and natriuretic peptide, dendroaspis natriuretic peptide, in experimental severe congestive heart failure. Hypertension 37, 1089–1094.PubMedCrossRefGoogle Scholar
  55. Maguire, J.J., Kuc, R.E., Rous, B.A., Davenport, A.P., 1996. Failure of BQ123, a more potent antagonist of sarafotoxin 6b than of endothelin-1, to distinguish between these agonists in binding experiments. Br. J. Pharmacol. 118, 335–342.PubMedCrossRefGoogle Scholar
  56. Martel, E., Champeroux, P., Brisac, A.-M., Magnier, A., Richard, S., Safar, M., 1991. Pressor responses to endothelin-1 in normotensive and spotaneosly hypertensive rats. Neurochem. Int. 18, 553–557.PubMedCrossRefGoogle Scholar
  57. Masaki, T., 2000. The endothelin family: an overview. J. Cardiovasc. Pharmacol. 35, S3-S5.PubMedCrossRefGoogle Scholar
  58. Masaki, T., 2001. Historical prespective and introduction to the endothelin family of peptides, in: Warner, T.D. (Ed.), Endothelin and its Inhibitors. Springer, Berlin, pp.1–10.CrossRefGoogle Scholar
  59. Mesquita, L.S.M., Frias, F.T., Carmona, E., Borgheresi, R.A.M.B., 2008. Differences in endothelin receptor types in the vasculature of Bothrops jararaca (Viperidae) and Oxyrhopus guibei (Colubridae) snakes. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. 148, 61–67.PubMedCrossRefGoogle Scholar
  60. Michel, G.H., Murayama, N., Sada, T., Nozaki, M., Saguchi, K., Ohi, H., Fujita, Y., Koike, H., Higuchi, S., 2000. Two N-terminally truncated forms of C-type natriuretic peptide from habu snake venom. Peptides 21, 609–615.PubMedCrossRefGoogle Scholar
  61. Murayama, N., Hayashi, M.A.F., Ohi, H., Ferreira, L.A.F., Hermann, V.V., Saito, H., Fujita, Y., Higuchi, S., Fernandes, B.L., Yamane, T., de Camargo, A.C.M., 1997. Cloning and sequence analysis of a Bothrops jararaca cDNA encoding a precursor of seven bradykinin potentiating peptides and a C-type natriuretic peptide. Proc. Natl. Acad. Sci. U.S.A. 94, 1189–1193.PubMedCrossRefGoogle Scholar
  62. Nambi, P., Elshourbagy, N., Wu, H.L., Pullen, M., Ohlstein, E.H., Brooks, D.P., Lago, M.A., Elliott, J.D., Gleason, J.G., Ruffolo, R.R., Jr., 1994. Nonpeptide endothelin receptor antagonists 1. Effects on binding and signal transduction on human endothelin(A) and endothelin(B) receptors. J. Pharmacol. Exp. Ther. 271, 755–761.PubMedGoogle Scholar
  63. Noguchi, K., Noguchi, Y., Hirose, H., Nishikibe, M., Ihara, M., Ishikawa, K., Yano, M., 1993. Role of endothelin ET(B) receptors in bronchoconstrictor and vasoconstrictor responses in guinea-pigs. Eur. J. Pharmacol. 233, 47–51.PubMedCrossRefGoogle Scholar
  64. Olson, K.R., Duff, D.W., Farrell, A.P., Keen, J., Kellogg, M.D., Kullman, D., Villa, J., 1991. Cardiovascular effects of endothelin in trout. Am. J. Physiol. 260, H1214–H1223.PubMedGoogle Scholar
  65. Pandey, K.N., 2005. Biology of natriuretic peptides and their receptors. Peptides 26, 901–932.PubMedCrossRefGoogle Scholar
  66. Pandey, K.N., Pavlou, S.N., Inagami, T., 1988. Identification and characterization of 3 distinct atrial natriuretic factor receptors – evidence for tissue-specific heterogeneity of receptor subtypes in vascular smooth-muscle, kidney tubular epithelium, and leydig tumor-cells by ligand-binding, photoaffinity-labeling, and tryptic proteolysis. J. Biol. Chem. 263, 13406–13413.PubMedGoogle Scholar
  67. St. Pierre, L., Woods, R., Earl, S., Masci, P.P., Lavin, M.F., 2005. Identification and analysis of venom gland-specific genes from the coastal taipan (Oxyuranus scutellatus) and related species. Cell. Mol. Life Sci. 62, 2679–2693.CrossRefGoogle Scholar
  68. Poder, T.C., Silberberg, S.D., Rampe, D., 1991. Contraction of reptile, amphibian, and fish blood vessels by endothelin-1. Can. J. Physiol. Pharmacol. 69, 215–217.PubMedCrossRefGoogle Scholar
  69. Potter, L.R., Abbey-Hosch, S., Dickey, D.M., 2006. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocrine Rev. 27, 47–72.CrossRefGoogle Scholar
  70. Quinton, L., Le Caer, J.P., Phan, G., Ligny-Lemaire, C., Bourdais-Jomaron, J., Ducancel, F., Chamot-Rooke, J., 2005. Characterization of toxins within crude venoms by combined use of Fourier transform mass spectrometry and cloning. Anal. Chem. 77, 6630–6639.PubMedCrossRefGoogle Scholar
  71. Rocha e Silva, M., Beraldo, W.T., Rosenfeld, G., 1949. Bradykinin, a hypotensive and smooth muscle stimulating factor released from plasma globulin by snake venom and by trypsin. Am. J. Physiol. 156, 161–273.Google Scholar
  72. Rubin, L.J., Badesch, D.B., Barst, R.J., Galie, N., Black, C.M., Keogh, A., Pulido, T., Frost, A., Roux, S., Leconte, I., Landzberg, M., Simonneau, G., 2002. Bosentan therapy for pulmonary arterial hypertension. N. Eng. J. Med. 346, 896–903.CrossRefGoogle Scholar
  73. Saida, K., Mitsui, Y., Ishida, N., 1989. A novel peptide vasoactive intestinal contractor, of a new (endothelin) peptide family. Molecular cloning, expression, and biological activity. J. Biol. Chem. 264, 14613–14616.PubMedGoogle Scholar
  74. Sakurai, T., Yanagisawa, M., Takuwa, Y., Miyazaki, H., Kimura, S., Goto, K., Masaki, T., 1990. Cloning of a cDNA encoding a non-isopeptide-selective subtype of the endothelin receptor. Nature 348, 732–735.PubMedCrossRefGoogle Scholar
  75. Schweitz, H., Vigne, P., Moinier, D., Ferlin, C., Lazdunski, M., 1992. A new member of the natriuretic peptide family is present in the venom of the Green Mamba (Dendroaspis anguticeps). J. Biol. Chem. 267, 13928–13932.PubMedGoogle Scholar
  76. Shraga-Levine, Z., Sokolovsky, M., 2000. Functional coupling of G proteins to endothelin receptors is ligand and receptor subtype specific. Cell. Mol. Neurobiol. 20, 305–317.PubMedCrossRefGoogle Scholar
  77. Simon, T., Bdolah, A., Kochva, E., 1980. The two-component toxin of Vipera palaestinae: contribution of phospholipase A to its activity. Toxicon 18, 249–259.PubMedCrossRefGoogle Scholar
  78. Simonson, M.S., 2001. Cell signaling by endothelin peptides, in: Warner, T.D. (Ed.), Endothelin and its Inhibitors. Springer, Berlin, pp. 115–140.CrossRefGoogle Scholar
  79. Singh, G., Kuc, R.E., Maguire, J.J., Fidock, M., Davenport, A.P., 2006b. Novel snake venom ligand dendroaspis natriuretic peptide is selective for natriuretic peptide receptor-A in human heart – downregulation of natriuretic peptide receptor-A in heart failure. Circ. Res. 99, 183–190.PubMedCrossRefGoogle Scholar
  80. Singh, G., Maguire, J.J., Kuc, R.E., Skepper, J.N., Fidock, M., Davenport, A.P., 2006a. Characterization of the snake venom ligand [I-125]-DNP binding to natriuretic peptide receptor-A in human artery and potent DNP mediated vasodilatation. Brit. J. Pharmacol. 149, 838–844.CrossRefGoogle Scholar
  81. Sokolovsky, M., 1995. Endothelin receptor subtypes and their role in transmembrane signaling mechanisms. Pharmacol. Ther. 68, 435–471.PubMedCrossRefGoogle Scholar
  82. Sokolovsky, M., Shraga-Levine, Z., 2001. Sarafotoxins and their relationship to the endothelin family of peptides, in: Warner, T.D. (Ed.), Endothelin and its Inhibitors. Springer, Berlin, pp. 11–34.CrossRefGoogle Scholar
  83. Sudoh, T., Minamino, N., Kangawa, K., Matsuo, H., 1990. C-type natriuretic peptide (CNP) – a new member of natriuretic peptide family identified in porcine brain. Biochem. Biophys. Res. Commun. 168, 863–870.PubMedCrossRefGoogle Scholar
  84. Takasaki, C., Tamiya, N., Bdolah, A., Wollberg, Z., Kochva, E., 1988. Sarafotoxins S6: several isotoxins from Atractaspis engaddensis (Burrowing Asp) venom that affect the heart. Toxicon 26, 543–548.PubMedCrossRefGoogle Scholar
  85. Warner, T.D., De Nucci, G., Vane, J.R., 1989. Rat endothelin is a vasodilator in isolated perfused mesentery of the rat. Eur. J. Pharmacol. 159, 325–326.PubMedCrossRefGoogle Scholar
  86. Warrell, D.A., 1995. Clinical toxicology of snakebite in Asia, in: Meier, J., White, J. (Eds.), Handbook of Clinical Toxicology of Animal Venoms and Poisons. CRC Press, Roca Raton, pp. 493–594.Google Scholar
  87. Warrell, D.A., Ormerod, L.D., Davidson, N.M., 1976. Bites by the night adder (Causus maculatus) and burrowing vipers (genus Atractaspis) in Nigeria. Am. J. Trop. Med. Hyg. 25, 517–524.PubMedGoogle Scholar
  88. Watanabe, T.X., Itahara, Y., Kuroda, H., Chen, Y.N., Kimura, T., Sakakibara, S., 1995. Smooth muscle relaxing and hypotensive activities of synthetic calciseptine and homologous snake venom peptide FS2. Jpn. J. Pharmacol. 68, 305–313.PubMedCrossRefGoogle Scholar
  89. Weiser, E., Wollberg, Z., Kochva, E., Lee, S.Y., 1984. Cardiotoxic effects of the venom of the burrowing asp, Atractaspis engaddensis (Atractaspididae, Ophidia). Toxicon 22, 767–774.PubMedCrossRefGoogle Scholar
  90. Williams, D.L.J., Jones, K.L., Pettibone, D.J., Lis, E.V., Clineschmidt, B.V., 1991. Sarafotoxin S6c: an agonist which distinguishes between endothelin receptor subtypes. Biochem. Biophys. Res. Commun. 175, 556–561.PubMedCrossRefGoogle Scholar
  91. Wollberg, Z., Bdolah, A., Galron, R., Sokolovsky, M., Kochva, E., 1991. Contractile effects and binding properties of endothelins/sarafotoxins in the guinea pig ileum. Eur. J. Pharmacol. 198, 31–36.PubMedCrossRefGoogle Scholar
  92. Wollberg, Z., Bousso-Mittler, D., Bdolah, A., Kloog, Y., Kochva, E., Sokolovsky, M., 1992. Endothelins and sarafotoxins: effects on motility, binding properties and phosphoinositide hydrolysis during the estrus cycle of the rat uterus. J. Basic Clin. Physiol. Pharmacol. 3, 41–58.PubMedCrossRefGoogle Scholar
  93. Wollberg, Z., Matz, A., Kinamon, S., Bdolah, A. SRTX-d/e inhibits Sarafotoxin-b-induced contraction of guinea pig intestine. Toxicon 36, 1252. 1998. (Abstract)Google Scholar
  94. Wollberg, Z., Shabo-Shina, R., Intrator, N., Bdolah, A., Kochva, E., Shavit, G., Oron, Y., Vidne, B.A., Gitter, S., 1988. A novel cardiotoxic polypeptide from the venom of Atractaspis engaddensis (Burrowing Asp): cardiac effects in mice and isolated rat and human heart preparations. Toxicon 26, 525–534.PubMedCrossRefGoogle Scholar
  95. Yanagisawa, M., Kurihara, H., Kimura, S., Tomobo, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K., Masaki, T., 1988. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332, 411–415.PubMedCrossRefGoogle Scholar
  96. Yorikane, R., Koike, H., 1990. The arrhythmyogenic action of endothelin in rats. Jpn. J. Pharmacol. 53, 259–263.PubMedCrossRefGoogle Scholar
  97. Zhou, H.P., Murthy, K.S., 2003. Identification of the G protein-activating sequence of the single-transmembrane natriuretic peptide receptor C (NPR-C). Am. J. Physiol. Cell Physiol. 284, C1255-C1261.PubMedCrossRefGoogle Scholar
  98. Zigdon-Arad, T., Bdolah, A., Kochva, E., Wollberg, Z., 1992. Activity of sarafotoxin/endothelin peptides in the heart and brain of lower vertebrates. Toxicon 30, 439–448.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations