Procoagulant Properties of Plant Latex Proteases

  • H.V. Shivaprasad
  • R. Rajesh
  • M. Yariswamy
  • B.S. VishwanathEmail author


Plant derived molecules have found to be potential intervention with the human physiological events. The foundation laid for the search of pharmacologically active plant molecules is by the traditional knowledge which is passing from generation to generation. Latex of several plants obtained medicinal importance and is exclusively used as a common remedy to stop bleeding on fresh cuts and wound healing. The observed pharmacological activity of plant latices is attributed to the presence of proteolytic enzymes in it. Proteases found in plant latices belong to either cysteine or serine protease family, only one is a member of aspartate protease family. Plant latex proteases exhibit procoagulant action irrespective of the plant species and family. Their mechanism involved in the procoagulant action is yet to be understood clearly. The nature of procoagulant action of plant latices serine proteases is not clear. Where as cysteine proteases from plant latices exhibited specificities upon coagulation factors in inducing plasma coagulation. Ficin derived from Ficus carica shown to activate coagulation factor X. Cysteine proteases present in the latices of Asclepiadaceae plants have got thrombin like activity. Thrombin like activity of plant latex cysteine proteases is due to specific cleavage of fibrinogen molecules releasing fibrinopeptides. Apart from blood clot inducing property, both cysteine and serine proteases from plant latices have blood clot dissolving properties (Plasmin like activity). These specific actions of plant latex proteases on the coagulation cascade, could possibly utilized as biological tools in coagulation laboratory and as therapeutic agents.


Serine Protease Cysteine Protease Snake Venom Fibrin Clot Procoagulant Action 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



H.V. Shivaprasad and R. Rajesh thank the Council of Scientific and Industrial Research, India for financial support.


  1. Arima, K., Uchikoba, T., Yonezawa, H., Shimada, M., Kaneda, M., 2000. Cucumisin-like protease from the latex of Euphorbia supina. Phytochemistry 53, 639–644.PubMedCrossRefGoogle Scholar
  2. Ashwani, K., 1999. Ayurvedic medicines: some potential plants for medicine from India. A meeting of the international forum on traditional medicines. Toyama Medical and Pharmaceutical University, Toyama, Japan.Google Scholar
  3. Barrett, A.J., Rawlings, N.D., Woessner, J.F., 1998. Handbook of Proteolytic Enzymes. Academic Press, New York.Google Scholar
  4. Begum, D., Nath, S.C., 2000. Ethnobotanical review of medicinal plants used for skin diseases and related problems in Northeastern India. J. Herbs Spices Med. Plants 7, 55–93.CrossRefGoogle Scholar
  5. Brockbank, W.J., Lynn, K.R., 1979. Purification and preliminary characterization of two asclepains from the latex of Asclepias syriaca L. (milkweed). Biochim. Biophys. Acta 578, 13–22.PubMedCrossRefGoogle Scholar
  6. Cavalli, S.V., Arribere, M.C., Cortadi, A., Caffini, N.O., Priolo, N.S., 2003. Morrenain bI, a papain-like endopeptidase from the latex of Morrenia brachystephana Griseb. (Asclepiadaceae). J. Protein Chem. 22, 15–22.CrossRefGoogle Scholar
  7. Cavalli, S.V., Cortadi, A., Arribére, M.C., Conforti, P., Caffini, N.O., Priolo, N., 2001. Comparison of two cysteine endopeptidases from latices of Morrenia brachystephana Griseb. and Morrenia odorata (Hook et Arn.) Lindley (Asclepiadaceae). Biol. Chem. 382, 879–883.PubMedCrossRefGoogle Scholar
  8. Chetia, D., Nath, L.K., Dutta, S.K., 1999. Extraction, purification and physicochemical properties of a proteolytic enzyme from the latex of Ficus hispida Linn. Indian J. Pharm. Sci. 61, 29–33.Google Scholar
  9. Davie, E.W., 1995. Biochemical and molecular aspects of the coagulation cascade. Thromb. Haemostat. 74, 1–6.Google Scholar
  10. De Moraes, M.G., Termignoni, C., Salas, C., 1994. Biochemical characterization of new cysteine endopeptidase from Carica candarmarcensis L. Plant Sci. 102, 11–18.CrossRefGoogle Scholar
  11. Devaraj, K.B., Gowda, L.R., Prakash, V., 2008b. An unusual thermostable aspartic protease from the latex of Ficus racemosa (L.). Phytochemistry 69, 647–655.PubMedCrossRefGoogle Scholar
  12. Devaraj, K.B., Kumar, P.R., Prakash, V., 2008a. Purification, characterization, and solvent-induced thermal stabilization of ficin from Ficus carica. J. Agric. Food Chem. 56, 11417–11423.PubMedCrossRefGoogle Scholar
  13. Domsalla, A., Melzig, M.F., 2008. Occurrence and properties of proteases in plant latices. Planta Med. 74, 699–711.PubMedCrossRefGoogle Scholar
  14. Dubey, V.K., Jagannadham, M.V., 2003. Procerain, a stable cysteine protease from the latex of Calotropis procera. Phytochemistry 62, 1057–1071.PubMedCrossRefGoogle Scholar
  15. Gailani, D., Broze, G.J., Jr., 1991. Factor XI activation in a revised model of blood coagulation. Science 253, 909–912.PubMedCrossRefGoogle Scholar
  16. Gavira, J.A., González-Ramírez, L.A., Oliver-Salvador, M.C., Soriano-García, M., García-Ruiz, J.M., 2007. Structure of the mexicain-E-64 complex and comparison with other cysteine proteases of the papain family. Acta Crystallogr. D. Biol. Crystallogr. 63, 555–563.PubMedCrossRefGoogle Scholar
  17. Kinghorn, A.D., 1980. Major skin-irritant principle from Synadenium grantii. J. Pharm. Sci. 69, 1446–1447.PubMedCrossRefGoogle Scholar
  18. Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M., Kohno, K., 2004. Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Plant J. 37, 370–378.PubMedCrossRefGoogle Scholar
  19. Krem, M.M., Di Cera, E., 2001. Molecular markers of serine protease evolution. EMBO J. 20, 3036–3045.PubMedCrossRefGoogle Scholar
  20. Krem, M.M., Di Cera, E., 2002. Evolution of enzyme cascades from embryonic development to blood coagulation. Trends Biochem. Sci. 27, 67–74.PubMedCrossRefGoogle Scholar
  21. Kundu, S., Sundd, M., Jagannadham, M.V., 2000. Purification and characterization of a stable cysteine protease ervatamin B, with two disulfide bridges, from the latex of Ervatamia coronaria. J. Agric. Food Chem. 48, 171–179.PubMedCrossRefGoogle Scholar
  22. Lennox, F.G., Ellis, W.J., 1945. Euphorbain, a protease occurring in the latex of the weed Euphorbia lathyris. Biochem. J. 39, 465–470.PubMedGoogle Scholar
  23. Liggieri, C., Arribére, M.C., Trejo, S.A., Canals, F., Avilés, F.X., Priolo, N.S., 2004. Purification and biochemical characterization of asclepain c I from the latex of Asclepias curassavica L. Protein J. 23, 403–411.CrossRefGoogle Scholar
  24. Lynn, K.R., Clevette-Radford, N.A., 1984a. Euphorbin P, a serine protease from Euphorbia pulcherrima. Phytochemistry 23, 682–683.CrossRefGoogle Scholar
  25. Lynn, K.R., Clevette-Radford, N.A., 1984b. Purification and characterization of Hevain, a serine protease from the latex of Hevea brasiliensis. Phytochemistry 23, 963–964.CrossRefGoogle Scholar
  26. Lynn, K.R., Clevette-Radford, N.A., 1985a. Three serine proteases from the latex of Euphorbia cyparissias. Phytochemistry 24, 925–928.CrossRefGoogle Scholar
  27. Lynn, K.R., Clevette-Radford, N.A., 1985b. Two proteases from the latex of Eiaeophobia drupifera. Phytochemistry 24, 2843–2845.CrossRefGoogle Scholar
  28. Lynn, K.R., Clevette-Radford, N.A., 1985c. Four latex serine proteases from the latex of Euphorbia tirucalli. Can. J. Biochem. Cell Biol. 63, 1093–1096.CrossRefGoogle Scholar
  29. Lynn, K.R., Clevette-Radford, N.A., 1986a. Isolation and characterization of proteases from Euphorbia lacteal and Euphorbia lactea cristata. Phytochemistry 25, 807–810.CrossRefGoogle Scholar
  30. Lynn, K.R., Clevette-Radford, N.A., 1986b. Hevains: serine-centred proteases from the latex of Hevea brasiliensis. Phytochemistry 25, 2279–2282.CrossRefGoogle Scholar
  31. Lynn, K.R., Clevette-Radford, N.A., 1986c. Ficin e, a serine–centred protease from Ficus elastica. Phytochemistry 25, 1559–1561.CrossRefGoogle Scholar
  32. Magalhaes, A., Magalhaes, H.P., Richardson, M., Gontijo, S., Ferreira, R.N., Almeida, A.P., Sanchez, E.F., 2007. Purification and properties of a coagulant thrombin-like enzyme from the venom of Bothrops leucurus. Comp. Biochem. Physiol. A. Comp. Physiol. 146, 565–575.CrossRefGoogle Scholar
  33. Matsui, T., Fujimura, Y., Titani, K., 2000. Snake venom proteases affecting hemostasis and thrombosis. Biochim. Biophys. Acta 1477, 146-156.PubMedCrossRefGoogle Scholar
  34. Menon, M., Vithayathil, P.J., Raju, S.M., Ramadoss, C.S., 2002. Isolation and characterization of proteolytic enzymes from the latex of Synadenium grantii Hook, ‘f’. Plant Sci. 163, 131–139.CrossRefGoogle Scholar
  35. Nallamsetty, S., Kundu, S., Jagannadham, M.V., 2003. Purification and biochemical characterization of a highly active cysteine protease ervatamin A from the latex of Ervatamia coronaria. J. Protein Chem. 22, 1–13.PubMedCrossRefGoogle Scholar
  36. Obregón, W.D., Arribére, M.C., Del Valle, S.M., Liggieri, C., Caffini, N., Priolo, N., 2001. Two new cysteine endopeptidases obtained from the latex of Araujia hortorum fruits. J. Protein Chem. 20, 317–325.PubMedCrossRefGoogle Scholar
  37. Osoniyi, O., Onajobi, F., 2003. Coagulant and anticoagulant activities in Jatropha curcas latex. J. Ethnopharmacol. 89, 101–105.PubMedCrossRefGoogle Scholar
  38. Patel, A.K., Singh, V.K., Jagannadham, M.V., 2007. Carnein, a serine protease from noxious plant weed Ipomoea carnea (morning glory). J. Agric. Food Chem. 55, 5809–5818.PubMedCrossRefGoogle Scholar
  39. Patel, B.K., Jagannadham, M.V., 2003. A high cysteine containing thiol proteinase from the latex of Ervatamia heyneana: purification and comparison with ervatamin B and C from Ervatamia coronaria. J. Agric. Food Chem. 51, 6326–6334.PubMedCrossRefGoogle Scholar
  40. Perello, M., Arribere, M.C., Caffini, N.O., Priolo, N.S., 2000. Proteolytic enzymes from the latex of Ficus pumila L. (Moraceae). Acta Farm. Bonaerense 19, 257–262.Google Scholar
  41. Prasad, K.M.R., Virupaksha, T.K., 1990. Purification and characterization of a protease from the jackfruit latex. Phytochemistry 29, 1763–1766.CrossRefGoogle Scholar
  42. Priolo, N., Morcelle, Del Valle, S., Arribére, M.C., López, L., Caffini, N., 2000. Isolation and characterization of a cysteine protease from the latex of Araujia hortorum fruits. J. Protein Chem. 19, 39–49.PubMedCrossRefGoogle Scholar
  43. Prusti, A.B., Behera, K.K., 2007. Ethnobotanical exploration of Malkangiri district of Orissa, India. Ethnobotanical Leaflets 11, 122–140.Google Scholar
  44. Rajesh, R., Nataraju, A., Raghavendra Gowda, C.D., Frey, B.M., Frey, F.J., Vishwanath, B.S., 2006. Purification and characterization of a 34-kDa, heat stable glycoprotein from Synadenium grantii latex: action on human fibrinogen and fibrin clot. Biochimie 88, 1313–1322.PubMedCrossRefGoogle Scholar
  45. Rajesh, R., Raghavendra Gowda, C.D., Nataraju, A., Dhananjaya, B.L., Kemparaju, K., Vishwanath, B.S., 2005. Procoagulant activity of Calotropis gigantea latex associated with fibrin(ogen)olytic activity. Toxicon 46, 84–92.PubMedCrossRefGoogle Scholar
  46. Rajesh, R., Shivaprasad, H.V., Raghavendra gowda, C.D., Nataraju, A., Dhananjaya, B.L., Vishwanath, B.S., 2007. Comparative study on plant latex proteases and their involvement in hemostasis: a special emphasis on clot inducing and dissolving properties. Planta Med. 73, 1061–1067.PubMedCrossRefGoogle Scholar
  47. Reddy, P.R., Rao, P.P., Prabhakar, M., 2003. Ethnomedicinal practices amongst Chenchus of Nagarjunasagar Srisailam Tiger Reserve (NSTR), Andhra Pradesh-plant remedies for cuts, wounds and boils. Ethnobotany 15, 67–70.Google Scholar
  48. Richter, G., Hans, P.S., Friedrich, D., Peter, L., 2002. Activation and inactivation of human factor X by proteases derived from Ficus carica. Br. J. Haematol. 119, 1042–1051.PubMedCrossRefGoogle Scholar
  49. Rietschel, R.L., Fowler, J.F., 2008. Allergic sensation to plants, in: Fischer’s Contact Dermatitis, 6th edition. BC Decker Inc., Hamilton, ON, Canada, pp. 405–453.Google Scholar
  50. Rudenskaya, G.N., Bogacheva, A.M., Preusser, A., Kuznetsova, A.V., Dunaevsky, YaE., Golovkin, B.N., Stepanov, V.M., 1998. Taraxalisin-a serine proteinase from dandelion Taraxacum officinale Webb s.l. FEBS Lett. 437, 237–240.PubMedCrossRefGoogle Scholar
  51. Rudenskaya, G.N., Bogdanova, E.A., Revina, L.P., Golovkin, B.N., Stepanov, V.M., 1995. Macluralisin – a serine proteinase from fruits of Maclura pomifera (Raf.) Schneid. Planta 196, 174–179.Google Scholar
  52. Samy, R.P., Pushparaj, P.N., Gopalakrishnakone, P., 2008. A compilation of bioactive compounds from Ayurveda. Bioinformation 3, 100-110.PubMedCrossRefGoogle Scholar
  53. Schmidt, R.J., Evans, F.J., 1980. Skin irritants of the sun spurge (Euphorbia helioscopia L.). Contact Derm. 6, 204–210.PubMedCrossRefGoogle Scholar
  54. Sengupta, A., Bhattacharya, D., Pal, G., Sinha, N.K., 1984. Comparative studies on Calotropins DI and DII from the latex of Calotropis gigantea. Arch. Biochem. Biophys. 232, 17–25.PubMedCrossRefGoogle Scholar
  55. Sequeiros, C., Torres, M.J., Trejo, S.A., Esteves, J.L., Natalucci, C.L., López, L.M., 2005. Philibertain g I, the most basic cysteine endopeptidase purified from the latex of Philibertia gilliesii Hook. et Arn. (Apocynaceae). Protein J. 24, 445–453.PubMedCrossRefGoogle Scholar
  56. Shimada, M., Uthikova, T., Arima, K., Kaneda, M., 2000. Isolation and characterization of a Cucumisin-like serine protease from the latex of Euphorbia seudophamaesyce Fisch. J. Biochem. Mol. Biol. Biophys. 4, 223–231.Google Scholar
  57. Shivaprasad, H.V., Rajesh, R., Frey, B.M., Frey, F.J., Vishwanath, B.S., 2010. ‘Pergularain e I’ – a plant cysteine protease with thrombin-like activity from Pergularia extensa latex. Thromb. Res. 125, e100–e105.Google Scholar
  58. Shivaprasad, H.V., Riyaz, M., Venkatesh Kumar, R., Dharmappa, K.K., Tarannum, S., Siddesha, J.M., Rajesh, R., Vishwanath, B.S., 2009. Cysteine proteases from the Asclepiadaceae plants latex exhibited thrombin and plasmin like activities. J. Thromb. Thrombolysis 28, 304–308.PubMedCrossRefGoogle Scholar
  59. State of the Environment Report, 2001.
  60. Swenson, S., Markland, F.S., Jr., 2005. Snake venom fibrin(ogen)olytic enzymes. Toxicon 45, 1021–1039.PubMedCrossRefGoogle Scholar
  61. Tablero, M., Arreguin, B., Soriana, M., Sanchez, R.I., Romera, A.R., Hernandez-Arana, A., 1991. Purification and characterization of multiple forms of Asclepain g from Asclepias glaucescens H.B.K. Plant Sci. 74, 7–15.CrossRefGoogle Scholar
  62. Tomar, R., Kumar, R., Jagannadham, M.V., 2008. A stable serine protease, wrightin, from the latex of the plant Wrightia tinctoria (Roxb.) R. Br.: purification and biochemical properties. J. Agric. Food Chem. 56, 1479–1487.PubMedCrossRefGoogle Scholar
  63. Trejo, S.A., López, L.M., Cimino, C.V., Caffini, N.O., Natalucci, C.L., 2001. Purification and characterization of a new plant endopeptidase isolated from latex of Asclepias fruticosa L. (Asclepiadaceae). J. Protein Chem. 20, 469–477.PubMedCrossRefGoogle Scholar
  64. Warkentin, T.E., 1998. Limitations of conventional treatment options for heparin-induced thrombocytopenia. Semin Hematol. 35, 17–25.PubMedGoogle Scholar
  65. WHO Traditional Medicine Strategy 2002–2005,
  66. Winnick, T., Davis, A.R., Greenberg, D.M., 1939. Physicochemical properties of the proteolytic enzyme from the latex of the milkweed, Asclepias speciosa Torr. Some comparisons with other proteases. J. Gen. Physiol. 275, 289–300.Google Scholar
  67. Yadav, S.C., Pande, M., Jagannadham, M.V., 2006. Highly stable glycosylated serine protease from the medicinal plant Euphorbia milii. Phytochemistry 67, 1414–1426.PubMedCrossRefGoogle Scholar
  68. Zuskin, E., Mustajbegović, J., Kanceljak, B., Macan, J., Ivanković, D., Smolej-Narancić, N., 1999. Occurance of nonspecific symptoms of irritation in workers exposed to latex. Lijec Vjesn. 121, 230–233.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • H.V. Shivaprasad
    • 1
  • R. Rajesh
    • 1
    • 2
  • M. Yariswamy
    • 1
  • B.S. Vishwanath
    • 1
    Email author
  1. 1.Department of Studies in BiochemistryUniversity of Mysore, ManasagangothriMysoreIndia
  2. 2.Department of Microbiology and ImmunologyUniversity of MarylandBaltimoreUSA

Personalised recommendations