Advertisement

Procoagulant Factors from Lonomia Caterpillars

  • Ana Marisa Chudzinski-TavassiEmail author
  • Linda Christian Carrijo-Carvalho
Chapter

Abstract

Little has been known about hemostasis of insects and the identity of its clotting factors. In the Lepidoptera Order, few proteins have been described to affect hemolymph. There is the possibility of finding a large diversity of proteins that could play a physiological role in the hemolimph clotting, due to the complexity and variability of their coagulation systems. Lonomia has been the most studied genus, due to the large numbers of accidents resulting from human contact with Lonomia caterpillars. Those accidents are characterized as a hemorrhagic syndrome resulting from a massive disturbance of the hemostatic system caused by toxins found in the caterpillar bristles. In view of the present knowledge and literature, insects from the Lepidoptera Order, particularly caterpillars, stand as interesting sources for the identification, characterization, cloning and expression of proteins affecting hemostasis, and new candidates for therapeutic and biotechnology uses. Lopap (L. obliqua prothrombin activator protease) and Losac (L. obliqua Stuart-factor activator protease) toxins isolated from the L. obliqua bristles, are among the procoagulant proteins better characterized from Lepitdoptera. Such procoagulant molecules are promising tools for diagnostic and therapeutic uses.

Keywords

Prothrombin Activator Hemostatic System Anticoagulant Protein Snake Venom Toxin Blood Clotting Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alvarez Flores, M.P., Fritzen, M., Reis, C.V., Chudzinski-Tavassi, A.M., 2006. Losac, a factor X activator from Lonomia obliqua bristle extract: its role in the pathophysiological mechanisms and cell survival. Biochem. Biophys. Res. Commun. 343, 1216–1223.PubMedCrossRefGoogle Scholar
  2. Amarant, T., Burkhart, W., LeVine, H., 3rd, Arocha-Pinango, C.L., Parikh, I., 1991. Isolation and complete amino acid sequence of two fibrinolytic proteinases from the toxic Saturnid caterpillar Lonomia achelous. Biochim. Biophys. Acta 1079, 214–221.PubMedCrossRefGoogle Scholar
  3. Arocha-Piñango, C.L., Pepper, D.S., 1981. Studies of a fibrinolytic enzyme from the larvae of Lonomia achelous (Cramer) using chromogenic peptide substrates. Thromb. Haemost. 46, 710–713.PubMedGoogle Scholar
  4. Arocha-Piñango, C.L., de Bosch, N.B., Torres, A., Goldstein, C., Nouel, A., Argüello, A., Carvajal, Z., Guerrero, B., Ojeda, A., Rodriguez, A., Rodriguez, S., 1992. Six new cases of a caterpillar-induced bleeding syndrome. Thromb. Haemost. 67, 402–407.PubMedGoogle Scholar
  5. Arocha-Piñango, C.L., Guerrero, B., 1999. Lonomia obliqua and haemorrhagic syndrome. Lancet 354, 1304.PubMedCrossRefGoogle Scholar
  6. Arocha-Piñango, C.L., Marval, E., Guerrero, B., 2000. Lonomia genus caterpillar toxins: biochemical aspects. Biochimie 82, 937–942.PubMedCrossRefGoogle Scholar
  7. Arocha-Piñango, C.L., Guerrero, B., 2001. Lonomia genus caterpillar envenomation: clinical and biological aspects. Haemostasis 31, 288–293.PubMedGoogle Scholar
  8. Arocha-Piñango, C.L., Guerrero, B., 2003. Hemorrhagic syndrome induced by caterpillars. Clinical and experimental studies. Invest. Clin. 44, 155–163.PubMedGoogle Scholar
  9. Asano, T., Ashida, M., 2001. Cuticular pro-phenoloxidase of the silkworm, Bombyx mori. Purification and demonstration of its transport from hemolymph. J. Biol. Chem. 276, 11100–11112.PubMedCrossRefGoogle Scholar
  10. Bezeaud, A., Miyata, T., Helley, D., Zeng, Y.Z., Kato, H., Aillaud, M.F., Juhan-Vague, I., Guillin, M.C., 1995. Functional consequences of the Ser334→Pro mutation in a human factor X variant (factor X Marseille). Eur. J. Biochem. 234, 140–147.PubMedCrossRefGoogle Scholar
  11. Bidla, G., Lindgren, M., Theopold, U., Dushay, M.S., 2005. Hemolymph coagulation and phenoloxidase in Drosophila larvae. Dev. Comp. Immunol. 29, 669–679.PubMedCrossRefGoogle Scholar
  12. Carrijo-Carvalho, L.C., Chudzinski-Tavassi, A.M., 2007. The venom of the Lonomia caterpillar: an overview. Toxicon 49, 741–757.PubMedCrossRefGoogle Scholar
  13. Cerenius, L., Söderhäll, K., 2004. The prophenoloxidase-activating system in invertebrates. Immunol. Rev. 198, 116–126.PubMedCrossRefGoogle Scholar
  14. Chudzinski-Tavassi, A.M., Schattner, M., Fritzen, M., Pozner, R.G., Reis, C.V., Lourenço, D., Lazzari, M.A., 2001. Effects of lopap on human endothelial cells and platelets. Haemostasis 31, 257–265.PubMedGoogle Scholar
  15. Chudzinski-Tavassi, A.M., Alvarez Flores, M.P., 2005. Exploring new molecules and activities from Lonomia obliqua caterpillars. Pathophysiol. Haemost. Thromb. 34, 228–233.PubMedCrossRefGoogle Scholar
  16. Chudzinski-Tavassi, A.M., Carrijo-Carvalho, L.C., 2006. Biochemical and biological properties of Lonomia obliqua bristle extract. J. Venoms Anim. Toxins incl. Trop. Dis. 12, 156–171.Google Scholar
  17. Chudzinski-Tavassi, A.M., Carrijo-Carvalho, L.C., Faria, F., Alvarez Flores, M.P., Simons, S.M., 2009. Exogenous factors affecting hemostasis: therapeutic perspectives and biotechnological approaches, in: de Lima, M.E., Pimenta, A.M.C., Martin-Eauclaire, M.F., Zingali, R.B., Rochat, H. (Eds.), Animal toxins: State of the Art. Perspectives in Health and Biotechnology. UFMG, Belo Horizonte, pp. 495–523.Google Scholar
  18. Coll-Sangrona, E., Arocha-Piñango, C.L., 1998. Fibrinolytic action on fresh human clots of whole body extracts and two semipurified fractions from Lonomia achelous caterpillar. Braz. J. Med. Biol. Res. 31, 779–784.PubMedCrossRefGoogle Scholar
  19. Corrêa, M.S., Siqueira-Batista, R., Gomes, A.P., Franco-Barbosa, A., Verzola, A.C., Oliveira, F.R., Squeff, F.A., Motta-Leal-Filho, J.M., Tavares, R.H., Amorim, D.S., De-Maria-Moreira, N.L., Santos, S.S., 2004. Lonomia erucism in Teresópolis, Rio de Janeiro State, Brazil: report of a probable case and review. Rev. Soc. Bras. Med. Trop. 37, 418–421.PubMedCrossRefGoogle Scholar
  20. Couppié, P., Marty, C., Sainte-Marie, D., Pradinaud, R., 1998. Poisonous caterpillars in French Guyana. 5 cases. Ann. Dermatol. Venereol. 125, 489–491.PubMedGoogle Scholar
  21. Da Silva, W.D., Campos, C.M., Gonçalves, L.R., Sousa-e-Silva, M.C., Higashi, H.G., Yamagushi, I.K., Kelen, E.M., 1996. Development of an antivenom against toxins of Lonomia obliqua caterpillars. Toxicon 34, 1045–1049.PubMedCrossRefGoogle Scholar
  22. Da Silva, G.H., Hyslop, S., da Cruz-Höfling, M.A., 2004. Lonomia obliqua caterpillar venom increases permeability of the blood-brain barrier in rats. Toxicon 44, 625–634.PubMedCrossRefGoogle Scholar
  23. Diaz, J.H., 2005. The evolving global epidemiology, syndromic classification, management, and prevention of caterpillar envenoming. Am. J. Trop. Med. Hyg. 72, 347–357.PubMedGoogle Scholar
  24. Donato, J.L., Moreno, R.A., Hyslop, S., Duarte, A., Antunes, E., Le Bonniec, B.F., Rendu, F., de Nucci, G., 1998. Lonomia obliqua caterpillar spicules trigger human blood coagulation via activation of factor X and prothrombin. Thromb. Haemost. 79, 539–542.PubMedGoogle Scholar
  25. Duarte, C.A., Caovilla, J., Lorini, I., Lorini, D., Mantorani, G., Sumida, J., Manfre, P.C., Silveira, R., Moura, S.P., 1990. Insuficiencia renal aguda por acidentes com lagartas. J. Bras. Nefrol. 12, 184–187.Google Scholar
  26. Duarte, A.C., Crusius, P.S., Pires, C.A., Schilling, M.A., Fan, H.W., 1996. Intracerebral haemorrhage after contact with Lonomia caterpillars. Lancet 348, 1033.PubMedCrossRefGoogle Scholar
  27. Dushay, M.S., 2009. Insect hemolymph clotting. Cell. Mol. Life Sci. 66, 2643–2650.PubMedCrossRefGoogle Scholar
  28. Fan, H.W., Cardoso, J.L., Olmos, R.D., Almeida, F.J., Viana, R.P., Martinez, A.P., 1998. Hemorrhagic syndrome and acute renal failure in a pregnant woman after contact with Lonomia caterpillars: a case report. Rev. Inst. Med. Trop. Sao Paulo 40, 119–120.PubMedCrossRefGoogle Scholar
  29. Finnerty, C.M., Karplus, P.A., Granados, R.R., 1999. The insect immune protein scolexin is a novel serine proteinase homolog. Protein Sci. 8, 242–248.PubMedCrossRefGoogle Scholar
  30. Fritzen, M., Schattner, M., Ribeiro, A.L., Batista, I.F., Ventura, J., Prezoto, B.C., Chudzinski-Tavassi, A.M., 2003. Lonomia obliqua venom action on fibrinolytic system. Thromb. Res. 112, 105–110.PubMedCrossRefGoogle Scholar
  31. Fritzen, M., Flores, M.P., Reis, C.V., Chudzinski-Tavassi, A.M., 2005. A prothrombin activator (Lopap) modulating inflammation, coagulation and cell survival mechanisms. Biochem. Biophys. Res. Commun. 333, 517–523.PubMedCrossRefGoogle Scholar
  32. Geng, C., Dunn, P.E., 1988. Hemostasis in larvae of Manduca sexta: formation of a fibrous coagulum by hemolymph proteins. Biochem. Biophys. Res. Commun. 155, 1060–1065.PubMedCrossRefGoogle Scholar
  33. Guerrero, B., Arocha-Piñango, C.L., 1992. Activation of human prothrombin by the venom of Lonomia achelous (Cramer) caterpillars. Thromb. Res. 66, 169–177.PubMedCrossRefGoogle Scholar
  34. Guerrero, B.A., Arocha-Piñango, C.L., San Juan, A.G., 1997a. Lonomia achelous caterpillar venom (LACV) selectively inactivates blood clotting factor XIII. Thromb. Res. 87, 83–93.CrossRefGoogle Scholar
  35. Guerrero, B.A., Arocha-Piñango, C.L., San Juan, A.G., 1997b. Degradation of human factor XIII by lonomin V, a purified fraction of Lonomia achelous caterpillar venom. Thromb. Res. 87, 171–181.PubMedCrossRefGoogle Scholar
  36. Guerrero, B., Perales, J., Gil, A., Arocha-Piñango, C.L., 1999. Effect on platelet FXIII and partial characterization of Lonomin V, a proteolytic enzyme from Lonomia achelous caterpillars. Thromb. Res. 93, 243–252.PubMedCrossRefGoogle Scholar
  37. Guerrero, B., Arocha-Piñango, C.L., Pinto, M.A., Müller, C.A., San Juan, A.G., Amorim, S., Perales, J., 2001. Thrombolytic effect of lonomin V in a rabbit jugular vein thrombosis model. Blood Coagul. Fibrinolysis 12, 521–529.PubMedCrossRefGoogle Scholar
  38. Hegedus, D.D., Erlandson, M., Baldwin, D., Hou, X., Chamankhah, M., 2008. Differential expansion and evolution of the exon family encoding the Serpin-1 reactive centre loop has resulted in divergent serpin repertoires among the Lepidoptera. Gene 418, 15–21.PubMedCrossRefGoogle Scholar
  39. Jiang, H., Wang, Y., Gu, Y., Guo, X., Zou, Z., Scholz, F., Trenczek, T.E., Kanost, M.R., 2005. Molecular identification of a bevy of serine proteinases in Manduca sexta hemolymph. Insect Biochem. Mol. Biol. 35, 931–943.PubMedCrossRefGoogle Scholar
  40. Kanost, M.R., 1999. Serine proteinase inhibitors in arthropod immunity. Dev. Comp. Immunol. 23, 291–301.PubMedCrossRefGoogle Scholar
  41. Kelen, E.M.A., Picarelli, Z.P., Duarte, A.C., 1995. Hemorrhagic syndrome induced by contact with caterpillars of the genus Lonomia (Saturniidae, Hemileucinae). J. Toxicol. Toxin Rev. 14, 283–308.CrossRefGoogle Scholar
  42. Kini, R.M., Rao, V.S., Joseph, J.S., 2001. Procoagulant proteins from snake venoms. Haemostasis 31, 218–224.PubMedGoogle Scholar
  43. Kini, R.M., 2005. The intriguing world of prothrombin activators from snake venom. Toxicon 45, 1133–1145.PubMedCrossRefGoogle Scholar
  44. Koh, D.C., Armugam, A., Jeyaseelan, K., 2006. Snake venom components and their applications in biomedicine. Cell. Mol. Life Sci. 63, 3030–3041.PubMedCrossRefGoogle Scholar
  45. Korayem, A.M., Hauling, T., Lesch, C., Fabbri, M., Lindgren, M., Loseva, O., Schmidt, O., Dushay, M.S., Theopold, U., 2007. Evidence for an immune function of lepidopteran silk proteins. Biochem. Biophys. Res. Commun. 352, 317–322.PubMedCrossRefGoogle Scholar
  46. Kotani, E., Yamakawa, M., Iwamoto, S., Tashiro, M., Mori, H., Sumida, M., Matsubara, F., Taniai, K., Kadono-Okuda, K., Kato, Y., Mori, H., 1995. Cloning and expression of the gene of hemocytin, an insect humoral lectin which is homologous with the mammalian von Willebrand factor. Biochim. Biophys. Acta 1260, 245–258.PubMedCrossRefGoogle Scholar
  47. Li, D., Scherfer, C., Korayem, A.M., Zhao, Z., Schmidt, O., Theopold, U., 2002. Insect hemolymph clotting: evidence for interaction between the coagulation system and the prophenoloxidase activating cascade. Insect Biochem. Mol. Biol. 32, 919–928.PubMedCrossRefGoogle Scholar
  48. López, M., Gil, A., Arocha-Piñango, C.L., 2000. The action of Lonomia achelous caterpillars venom on human factor V. Thromb. Res. 98, 103–110.PubMedCrossRefGoogle Scholar
  49. Marsh, N., Williams, V., 2005. Practical applications of snake venom toxins in haemostasis. Toxicon 45, 1171–1181.PubMedCrossRefGoogle Scholar
  50. Marval, E., Guerrero, B., Arocha-Piñango, C.L., 1999. The action of Lonomia achelous caterpillar venom on some blood coagulation and fibrinolysis parameters of the rabbit. Toxicon 37, 1491–1504.PubMedCrossRefGoogle Scholar
  51. Minnick, M.F., Rupp, R.A., Spence, K.D., 1986. A bacterial-induced lectin which triggers hemocyte coagulation in Manduca sexta. Biochem. Biophys. Res. Commun. 137, 729–735.PubMedCrossRefGoogle Scholar
  52. Patrick, A.R., Winkelmayer, W.C., Avorn, J., Fischer, M.A., 2007. Strategies for the management of suspected heparin-induced thrombocytopenia: a cost-effectiveness analysis. Pharmacoeconomics 25, 949–961.PubMedCrossRefGoogle Scholar
  53. Patthy, L., 1985. Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell 41, 657–663.PubMedCrossRefGoogle Scholar
  54. Pinto, A.F., Dobrovolski, R., Veiga, A.B., Guimarães, J.A., 2004. Lonofibrase, a novel alpha-fibrinogenase from Lonomia obliqua caterpillars. Thromb. Res. 113, 147–154.PubMedCrossRefGoogle Scholar
  55. Pinto, A.F., Dragulev, B., Guimarães, J.A., Fox, J.W., 2008. Novel perspectives on the pathogenesis of Lonomia obliqua caterpillar envenomation based on assessment of host response by gene expression analysis. Toxicon 51, 1119–1128.PubMedCrossRefGoogle Scholar
  56. Prezoto, B.C., Maffei, F.H., Mattar, L., Chudzinski-Tavassi, A.M., Curi, P.R., 2002. Antithrombotic effect of Lonomia obliqua caterpillar bristle extract on experimental venous thrombosis. Braz. J. Med. Biol. Res. 35, 703–712.PubMedCrossRefGoogle Scholar
  57. Rachkov, A.K., Spiridonov, N.A., Kondrashova, M.N., 1994. Adaptogenic and cardioprotective action of Galleria mellonella extract in rats and frogs. J. Pharm. Pharmacol. 46, 221–225.PubMedCrossRefGoogle Scholar
  58. Reis, C.V., Kelen, E.M., Farsky, S.H., Portaro, F.C., Sampaio, C.A., Fernandes, B.L., Camargo, A.C., Chudzinski-Tavassi, A.M., 1999. A Ca++ activated serine protease (LOPAP) could be responsible for the haemorrhagic syndrome caused by the caterpillar Lonomia obliqua. L obliqua Prothrombin Activator Protease. Lancet 353, 1942.PubMedCrossRefGoogle Scholar
  59. Reis, C.V., Portaro, F.C., Andrade, S.A., Fritzen, M., Fernandes, B.L., Sampaio, C.A., Camargo, A.C., Chudzinski-Tavassi, A.M., 2001a. A prothrombin activator serine protease from the Lonomia obliqua caterpillar venom (Lopap) biochemical characterization. Thromb. Res. 102, 427–436.PubMedCrossRefGoogle Scholar
  60. Reis, C.V., Farsky, S.H., Fernandes, B.L., Santoro, M.L., Oliva, M.L., Mariano, M., Chudzinski-Tavassi, A.M., 2001b. In vivo characterization of Lopap, a prothrombin activator serine protease from the Lonomia obliqua caterpillar venom. Thromb. Res. 102, 437–443.PubMedCrossRefGoogle Scholar
  61. Reis, C.V., Andrade, S.A., Ramos, O.H., Ramos, C.R., Ho, P.L., Batista, I.F., Chudzinski-Tavassi, A.M., 2006. Lopap, a prothrombin activator from Lonomia obliqua belonging to the lipocalin family: recombinant production, biochemical characterization and structure-function insights. Biochem. J. 398, 295–302.PubMedCrossRefGoogle Scholar
  62. Ricci-Silva, M.E., Valente, R.H., Leon, I.R., Tambourgi, D.V., Ramos, O.H., Perales, J., Chudzinski-Tavassi, A.M., 2008. Immunochemical and proteomic technologies as tools for unravelling toxins involved in envenoming by accidental contact with Lonomia obliqua caterpillars. Toxicon 51, 1017–1028.PubMedCrossRefGoogle Scholar
  63. Riley, C.T., Barbeau, B.K., Keim, P.S., Kézdy, F.J., Heinrikson, R.L., Law, J.H., 1984. The covalent protein structure of insecticyanin, a blue biliprotein from the hemolymph of the tobacco hornworm, Manduca sexta L. J. Biol. Chem. 259, 13159–13165.PubMedGoogle Scholar
  64. Rocha-Campos, A.C., Gonçalves, L.R., Higashi, H.G., Yamagushi, I.K., Fernandes, I., Oliveira, J.E., Ribela, M.T., Sousa-E-Silva, M.C., da Silva, W.D., 2001. Specific heterologous F(ab')2 antibodies revert blood incoagulability resulting from envenoming by Lonomia obliqua caterpillars. Am. J. Trop. Med. Hyg. 64, 283–289.PubMedGoogle Scholar
  65. Rowley, A.F., Ratcliffe, N.A., 1976. The granular cells of Galleria mellonella during clotting and phagocytic reactions in vitro. Tissue Cell. 8, 437–446.PubMedCrossRefGoogle Scholar
  66. Rubio, G.B., 2001. Epidemiological surveillance of distribution of the caterpillar Lonomia obliqua Walker, 1855, in the State of Paraná, Brazil. Cad. Saude Publica 17, 1036.CrossRefGoogle Scholar
  67. Saito, H., 1998. Purification and characterization of two insecticyanin-type proteins from the larval hemolymph of the Eri-silkworm, Samia cynthia ricini. Biochim. Biophys. Acta 1380, 141–150.PubMedCrossRefGoogle Scholar
  68. Sano, M., Tamada, Y., Niwa, K., Morita, T., Yoshino, G., 2009. Sulfated sericin is a novel anticoagulant influencing the blood coagulation cascade. J. Biomater. Sci. Polym. Ed. 20, 773–783.PubMedCrossRefGoogle Scholar
  69. Schmidt, O., Theopold, U., 1997. Helix pomatia lectin and annexin V, two molecular probes for insect microparticles: possible involvement in hemolymph coagulation. J. Insect Physiol. 43, 667–674.PubMedCrossRefGoogle Scholar
  70. Schoni, R., 2005. The use of snake venom-derived compounds for new functional diagnostic test kits in the field of haemostasis. Pathophysiol. Haemost. Thromb. 34, 234–240.PubMedCrossRefGoogle Scholar
  71. Tamada, Y., 2004. Sulfation of silk fibroin by chlorosulfonic acid and the anticoagulant activity. Biomaterials 25, 377–383.PubMedCrossRefGoogle Scholar
  72. Tamada, Y., Sano, M., Niwa, K., Imai, T., Yoshino, G., 2004. Sulfation of silk sericin and anticoagulant activity of sulfated sericin. J. Biomater. Sci. Polym. Ed. 15, 971–980.PubMedCrossRefGoogle Scholar
  73. Tanaka, H., Ishibashi, J., Fujita, K., Nakajima, Y., Sagisaka, A., Tomimoto, K., Suzuki, N., Yoshiyama, M., Kaneko, Y., Iwasaki, T., Sunagawa, T., Yamaji, K., Asaoka, A., Mita, K., Yamakawa, M., 2008. A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem. Mol. Biol. 38, 1087–1110.PubMedCrossRefGoogle Scholar
  74. Tans, G., Rosing, J., 2001. Snake venom activators of factor X: an overview. Haemostasis 31, 225–233.PubMedGoogle Scholar
  75. Theopold, U., Li, D., Fabbri, M., Scherfer, C., Schmidt, O., 2002. The coagulation of insect hemolymph. Cell. Mol. Life Sci. 59, 363–372.PubMedCrossRefGoogle Scholar
  76. Tong, Y., Kanost, M.R., 2005. Manduca sexta serpin-4 and serpin-5 inhibit the prophenol oxidase activation pathway: cDNA cloning, protein expression, and characterization. J. Biol. Chem. 280, 14923–14931.PubMedCrossRefGoogle Scholar
  77. Tong, Y., Jiang, H., Kanost, M.R., 2005. Identification of plasma proteases inhibited by Manduca sexta serpin-4 and serpin-5 and their association with components of the prophenol oxidase activation pathway. J. Biol. Chem. 280, 14932–14942.PubMedCrossRefGoogle Scholar
  78. Triplett, D.A., 2000. Use of the dilute Russell viper venom time (dRVVT): its importance and pitfalls. J. Autoimmun. 15, 173–178.PubMedCrossRefGoogle Scholar
  79. Veiga, A.B., Pinto, A.F., Guimarães, J.A., 2003. Fibrinogenolytic and procoagulant activities in the hemorrhagic syndrome caused by Lonomia obliqua caterpillars. Thromb. Res. 111, 95–101.PubMedCrossRefGoogle Scholar
  80. Veiga, A.B., Ribeiro, J.M., Guimarães, J.A., Francischetti, I.M., 2005. A catalog for the transcripts from the venomous structures of the caterpillar Lonomia obliqua: identification of the proteins potentially involved in the coagulation disorder and hemorrhagic syndrome. Gene. 355, 11–27.PubMedCrossRefGoogle Scholar
  81. Zannin, M., Lourenço, D.M., Motta, G., Dalla Costa, L.R., Grando, M., Gamborgi, G.P., Noguti, M.A., Chudzinski-Tavassi, A.M., 2003. Blood coagulation and fibrinolytic factors in 105 patients with hemorrhagic syndrome caused by accidental contact with Lonomia obliqua caterpillar in Santa Catarina, southern Brazil. Thromb. Haemost. 89, 355–364.PubMedGoogle Scholar
  82. Zou, Z., Picheng, Z., Weng, H., Mita, K., Jiang, H., 2009. A comparative analysis of serpin genes in the silkworm genome. Genomics 93, 367–375.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ana Marisa Chudzinski-Tavassi
    • 1
    Email author
  • Linda Christian Carrijo-Carvalho
    • 1
  1. 1.Laboratory of Biochemistry and BiophysicsInstituto ButantanSão PauloBrazil

Personalised recommendations