Advertisement

Streptokinase

  • Paul E. BockEmail author
  • Pablo Fuentes-Prior
Chapter

Abstract

Streptokinase (SK) is a plasminogen (Pg) activator secreted by a number of streptococcal strains. Kinetic analysis and equilibrium binding studies using active site fluorescently-labeled Pg and plasmin (Pm) has recently allowed dissection of the complicated mechanism of SK-induced Pg activation. Pg binding is aided by interactions between the COOH-terminal lysine residue of SK and one of the five kringle domains of the Pg zymogen. Compelling evidence indicates that the NH2-terminal residues of the bacterial activator insert into the Pg activation pocket. Interactions mediated by these residues, which mimic the endogenous NH2-terminus of the Pm catalytic domain, and stabilization of loops surrounding the active site, force SK-bound Pg to adopt a catalytically competent conformation (Pg*). Thus, SK functions according to the “molecular sexuality mechanism” of cofactor-induced zymogen activation. The SK·Pg* complex binds a second Pg molecule as substrate, and proteolytically converts it into Pm. Because SK has a much higher affinity for the product, Pm, than for substrate Pg, SK·Pm complex rapidly becomes the dominant species, which terminates the initial triggering catalytic cycle of Pg activation; SK·Pm then converts the remaining Pg molecules into Pm in a second catalytic cycle (the bullet cycle). Current investigations focus on areas of Pg*/Pm-bound SK that interact with the Pg substrate; recent results demonstrate that two consecutive Lys residues of the central SK domain play a key role in this regard. Further work on the mechanism of Pm generation would allow developing drugs that selectively target the SK·Pg*/SK·Pm complexes to treat severe streptococcal infections world-wide.

Keywords

Catalytic Domain Necrotizing Fasciitis Streptococcal Infection Fibrinolytic Agent Catalytic Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Research from the authors’ laboratories was supported by National Institutes of Health Grant HL056181 from the Heart, Lung, and Blood Institute to P. E. B. and SAF2007-64140 from Spanish Ministerio de Ciencia e Innovación (MICINN) to P. F.-P.

References

  1. Aneja, R., Datt, M., Singh, B., Kumar, S., Sahni, G., 2009. Identification of a new exosite involved in catalytic turnover by the streptokinase-plasmin activator complex during human plasminogen activation. J. Biol. Chem. 284, 32642–32650.PubMedCrossRefGoogle Scholar
  2. Bajaj, A.P., Castellino, F.J., 1977. Activation of human plasminogen by equimolar levels of streptokinase. J. Biol. Chem. 252, 492–498.PubMedGoogle Scholar
  3. Bean, R.R., Verhamme, I.M., Bock, P.E., 2005. Role of the streptokinase alpha-domain in the interactions of streptokinase with plasminogen and plasmin. J. Biol. Chem. 280, 7504–7510.PubMedCrossRefGoogle Scholar
  4. Ben Nasr, A., Wistedt, A., Ringdahl, U., Sjobring, U., 1994. Streptokinase activates plasminogen bound to human group C and G streptococci through M-like proteins. Eur. J. Biochem. 222, 267–276.PubMedCrossRefGoogle Scholar
  5. Berge, A., Sjobring, U., 1993. PAM, a novel plasminogen-binding protein from Streptococcus pyogenes. J. Biol. Chem. 268, 25417–25424.PubMedGoogle Scholar
  6. Bock, P.E., 1988. Active site selective labeling of serine proteases with spectroscopic probes using thioester peptide chloromethyl ketones: demonstration of thrombin labeling using N alpha-[(acetylthio)acetyl]-D-Phe-Pro-Arg-CH2Cl. Biochemistry 27, 6633–6639.PubMedCrossRefGoogle Scholar
  7. Bock, P.E., 1992a. Active-site-selective labeling of blood coagulation proteinases with fluorescence probes by the use of thioester peptide chloromethyl ketones. I. Specificity of thrombin labeling. J. Biol. Chem. 267, 14963–14973.PubMedGoogle Scholar
  8. Bock, P.E., 1992b. Active-site-selective labeling of blood coagulation proteinases with fluorescence probes by the use of thioester peptide chloromethyl ketones. II. Properties of thrombin derivatives as reporters of prothrombin fragment 2 binding and specificity of the labeling approach for other proteinases. J. Biol. Chem. 267, 14974–14981.PubMedGoogle Scholar
  9. Bock, P.E., 1993. Thioester peptide chloromethyl ketones: reagents for active site-selective labeling of serine proteinases with spectroscopic probes. Methods Enzymol. 222, 478–503.PubMedCrossRefGoogle Scholar
  10. Bock, P.E., Day, D.E., Verhamme, I.M., Bernardo, M.M., Olson, S.T., Shore, J.D., 1996. Analogs of human plasminogen that are labeled with fluorescence probes at the catalytic site of the zymogen. Preparation, characterization, and interaction with streptokinase. J. Biol. Chem. 271, 1072–1080.PubMedCrossRefGoogle Scholar
  11. Bock, P.E., Panizzi, P., Verhamme, I.M., 2007. Exosites in the substrate specificity of blood coagulation reactions. J. Thromb. Haemost. 5(Suppl 1), 81–94.PubMedCrossRefGoogle Scholar
  12. Bode, W., Huber, R., 1976. Induction of the bovine trypsinogen-trypsin transition by peptides sequentially similar to the N-terminus of trypsin. FEBS Lett. 68, 231–236.PubMedCrossRefGoogle Scholar
  13. Bok, R.A., Mangel, W.F., 1985. Quantitative characterization of the binding of plasminogen to intact fibrin clots, lysine-sepharose, and fibrin cleaved by plasmin. Biochemistry 24, 3279–3286.PubMedCrossRefGoogle Scholar
  14. Boxrud, P.D., Bock, P.E., 2000. Streptokinase binds preferentially to the extended conformation of plasminogen through lysine binding site and catalytic domain interactions. Biochemistry 39, 13974–13981.PubMedCrossRefGoogle Scholar
  15. Boxrud, P.D., Bock, P.E., 2004. Coupling of conformational and proteolytic activation in the kinetic mechanism of plasminogen activation by streptokinase. J. Biol. Chem. 279, 36642–36649.PubMedCrossRefGoogle Scholar
  16. Boxrud, P.D., Fay, W.P., Bock, P.E., 2000. Streptokinase binds to human plasmin with high affinity, perturbs the plasmin active site, and induces expression of a substrate recognition exosite for plasminogen. J. Biol. Chem. 275, 14579–14589.PubMedCrossRefGoogle Scholar
  17. Boxrud, P.D., Verhamme, I.M., Bock, P.E., 2004. Resolution of conformational activation in the kinetic mechanism of plasminogen activation by streptokinase. J. Biol. Chem. 279, 36633–36641.PubMedCrossRefGoogle Scholar
  18. Boxrud, P.D., Verhamme, I.M., Fay, W.P., Bock, P.E., 2001. Streptokinase triggers conformational activation of plasminogen through specific interactions of the amino-terminal sequence and stabilizes the active zymogen conformation. J. Biol. Chem. 276, 26084–26089.PubMedCrossRefGoogle Scholar
  19. Boyle, M.D., Lottenberg, R., 1997. Plasminogen activation by invasive human pathogens. Thromb. Haemost. 77, 1–10.PubMedGoogle Scholar
  20. Carapetis, J.R., Steer, A.C., Mulholland, E.K., Weber, M., 2005. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5, 685–694.PubMedCrossRefGoogle Scholar
  21. Castellino, F.J., McCance, S.G., 1997. The kringle domains of human plasminogen. Ciba Found. Symp. 212, 46–60.PubMedGoogle Scholar
  22. Cederholm-Williams, S.A., De Cock, F., Lijnen, H.R., Collen, D., 1979. Kinetics of the reactions between streptokinase, plasmin and alpha 2-antiplasmin. Eur. J. Biochem. 100, 125–132.PubMedCrossRefGoogle Scholar
  23. Cederholm-Williams, S.A., Fennell, S.J., 1981. Binding of plasmin(ogen) to sepharose bound fibrin(ogen) α-chain. Thromb. Res. 21, 503–506.PubMedCrossRefGoogle Scholar
  24. Chaudhary, A., Vasudha, S., Rajagopal, K., Komath, S.S., Garg, N., Yadav, M., Mande, S.C., Sahni, G., 1999. Function of the central domain of streptokinase in substrate plasminogen docking and processing revealed by site-directed mutagenesis. Protein Sci. 8, 2791–2805.PubMedCrossRefGoogle Scholar
  25. Chibber, B.A., Morris, J.P., Castellino, F.J., 1985. Effects of human fibrinogen and its cleavage products on activation of human plasminogen by streptokinase. Biochemistry 24, 3429–3434.PubMedCrossRefGoogle Scholar
  26. Cockell, C.S., Marshall, J.M., Dawson, K.M., Cederholm-Williams, S.A., Ponting, C.P., 1998. Evidence that the conformation of unliganded human plasminogen is maintained via an intramolecular interaction between the lysine-binding site of kringle 5 and the N-terminal peptide. Biochem. J. 333, 99–105.PubMedGoogle Scholar
  27. Collen, D., Van Hoef, B., Schlott, B., Hartmann, M., Guhrs, K.H., Lijnen, H.R., 1993. Mechanisms of activation of mammalian plasma fibrinolytic systems with streptokinase and with recombinant staphylokinase. Eur. J. Biochem. 216, 307–314.PubMedCrossRefGoogle Scholar
  28. Conejero-Lara, F., Parrado, J., Azuaga, A.I., Dobson, C.M., Ponting, C.P., 1998. Analysis of the interactions between streptokinase domains and human plasminogen. Protein Sci. 7, 2190–2199.PubMedCrossRefGoogle Scholar
  29. Damaschun, G., Damaschun, H., Gast, K., Gerlach, D., Misselwitz, R., Welfle, H., Zirwer, D., 1992. Streptokinase is a flexible multi-domain protein. Eur. Biophys. J. 20, 355–361.PubMedCrossRefGoogle Scholar
  30. Fears, R., Hibbs, M.J., Smith, R.A., 1985. Kinetic studies on the interaction of streptokinase and other plasminogen activators with plasminogen and fibrin. Biochem. J. 229, 555–558.PubMedGoogle Scholar
  31. Friedrich, R., Panizzi, P., Fuentes-Prior, P., Richter, K., Verhamme, I., Anderson, P.J., Kawabata, S., Huber, R., Bode, W., Bock, P.E., 2003. Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. Nature 425, 535–539.PubMedCrossRefGoogle Scholar
  32. GISSI, 1986. Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per lo Studio della Streptochinasi nell’Infarto Miocardico (GISSI). Lancet 1, 397–402.Google Scholar
  33. GISSI, 1987. Long-term effects of intravenous thrombolysis in acute myocardial infarction: final report of the GISSI study. Gruppo Italiano per lo Studio della Streptochi-nasi nell’Infarto Miocardico (GISSI). Lancet 2, 871–874.Google Scholar
  34. Gladysheva, I.P., Sazonova, I.Y., Chowdhry, S.A., Liu, L., Turner, R.B., Reed, G.L., 2002. Chimerism reveals a role for the streptokinase Beta-domain in nonproteolytic active site formation, substrate, and inhibitor interactions. J. Biol. Chem. 277, 26846–26851.PubMedCrossRefGoogle Scholar
  35. Gonzalez-Gronow, M., Siefring, G.E., Jr., Castellino, F.J., 1978. Mechanism of activation of human plasminogen by the activator complex, streptokinase-plasmin. J. Biol. Chem. 253, 1090–1094.PubMedGoogle Scholar
  36. GUSTO, 1993. An international randomized trial comparing four thrombolytic strategies for acute myocardial infarction. The GUSTO investigators. N. Engl. J. Med. 329, 673–682.CrossRefGoogle Scholar
  37. Huber, R., Bode, W., 1978. Structural basis of the activation and action of trypsin. Acc. Chem. Res. 11, 114–122.CrossRefGoogle Scholar
  38. Kim, D.M., Lee, S.J., Kim, I.C., Kim, S.T., Byun, S.M., 2000. Asp41-His48 region of streptokinase is important in binding to a substrate plasminogen. Thromb. Res. 99, 93–98.PubMedCrossRefGoogle Scholar
  39. Kosow, D.P., 1975. Kinetic mechanism of the activation of human plasminogen by streptokinase. Biochemistry 14, 4459–4465.PubMedCrossRefGoogle Scholar
  40. Lerch, P.G., Rickli, E.E., Lergier, W., Gillessen, D., 1980. Localization of individual lysine-binding regions in human plasminogen and investigations on their complex-forming properties. Eur. J. Biochem. 107, 7–13.PubMedCrossRefGoogle Scholar
  41. Lin, L.F., Houng, A., Reed, G.L., 2000. Epsilon amino caproic acid inhibits streptokinase-plasminogen activator complex formation and substrate binding through kringle-dependent mechanisms. Biochemistry 39, 4740–4745.PubMedCrossRefGoogle Scholar
  42. Lin, L.F., Oeun, S., Houng, A., Reed, G.L., 1996. Mutation of lysines in a plasminogen binding region of streptokinase identifies residues important for generating a functional activator complex. Biochemistry 35, 16879–16885.PubMedCrossRefGoogle Scholar
  43. Lucas, M.A., Fretto, L.J., McKee, P.A., 1983. The binding of human plasminogen to fibrin and fibrinogen. J. Biol. Chem. 258, 4249–4256.PubMedGoogle Scholar
  44. Mangel, W.F., Lin, B.H., Ramakrishnan, V., 1990. Characterization of an extremely large, ligand-induced conformational change in plasminogen. Science 248, 69–73.PubMedCrossRefGoogle Scholar
  45. Markus, G., DePasquale, J.L., Wissler, F.C., 1978a. Quantitative determination of the binding of ɛ-aminocaproic acid to native plasminogen. J. Biol. Chem. 253, 727–732.PubMedGoogle Scholar
  46. Markus, G., Evers, J.L., Hobika, G.H., 1978b. Comparison of some properties of native (Glu) and modified (Lys) human plasminogen. J. Biol. Chem. 253, 733–739.PubMedGoogle Scholar
  47. Marshall, J.M., Brown, A.J., Ponting, C.P., 1994. Conformational studies of human plasminogen and plasminogen fragments: evidence for a novel third conformation of plasminogen. Biochemistry 33, 3599–3606.PubMedCrossRefGoogle Scholar
  48. Marti, D.N., Hu, C.K., An, S.S., von Haller, P., Schaller, J., Llinas, M., 1997. Ligand preferences of kringle 2 and homologous domains of human plasminogen: canvassing weak, intermediate, and high-affinity binding sites by 1H-NMR. Biochemistry 36, 11591–11604.PubMedCrossRefGoogle Scholar
  49. McCance, S.G., Menhart, N., Castellino, F.J., 1994. Amino acid residues of the kringle-4 and kringle-5 domains of human plasminogen that stabilize their interactions with omega-amino acid ligands. J. Biol. Chem. 269, 32405–32410.PubMedGoogle Scholar
  50. McClintock, D.K., Bell, P.H., 1971. The mechanism of activation of human plasminogen by streptokinase. Biochem. Biophys. Res. Commun. 43, 694–702.PubMedCrossRefGoogle Scholar
  51. Menhart, N., Hoover, G.J., McCance, S.G., Castellino, F.J., 1995. Roles of individual kringle domains in the functioning of positive and negative effectors of human plasminogen activation. Biochemistry 34, 1482–1488.PubMedCrossRefGoogle Scholar
  52. Nihalani, D., Raghava, G.P., Sahni, G., 1997. Mapping of the plasminogen binding site of streptokinase with short synthetic peptides. Protein Sci. 6, 1284–1292.PubMedCrossRefGoogle Scholar
  53. Panizzi, P., Boxrud, P.D., Verhamme, I.M., Bock, P.E., 2006. Binding of the COOH-terminal lysine residue of streptokinase to plasmin(ogen) kringles enhances formation of the streptokinase.plasmin(ogen) catalytic complexes. J. Biol. Chem. 281, 26774–26778.PubMedCrossRefGoogle Scholar
  54. Parry, M.A., Fernandez-Catalan, C., Bergner, A., Huber, R., Hopfner, K.P., Schlott, B., Guhrs, K.H., Bode, W., 1998. The ternary microplasmin-staphylokinase-microplasmin complex is a proteinase-cofactor-substrate complex in action. Nat. Struct. Biol. 5, 917–923.PubMedCrossRefGoogle Scholar
  55. Phillips, G.N., Jr., Flicker, P.F., Cohen, C., Manjula, B.N., Fischetti, V.A., 1981. Streptococcal M protein: alpha-helical coiled-coil structure and arrangement on the cell surface. Proc. Natl. Acad. Sci. U.S.A. 78, 4689–4693.PubMedCrossRefGoogle Scholar
  56. Ponting, C.P., Holland, S.K., Cederholm-Williams, S.A., Marshall, J.M., Brown, A.J., Spraggon, G., Blake, C.C., 1992a. The compact domain conformation of human Glu-plasminogen in solution. Biochim. Biophys. Acta 1159, 155–161.PubMedCrossRefGoogle Scholar
  57. Ponting, C.P., Marshall, J.M., Cederholm-Williams, S.A., 1992b. Plasminogen: a structural review. Blood Coagul. Fibrinolysis 3, 605–614.PubMedCrossRefGoogle Scholar
  58. Rajamohan, G., Dahiya, M., Mande, S.C., Dikshit, K.L., 2002. Function of the 90-loop (Thr90-Glu100) region of staphylokinase in plasminogen activation probed through site-directed mutagenesis and loop deletion. Biochem. J. 365, 379–389.PubMedCrossRefGoogle Scholar
  59. Reddy, K.N., Markus, G., 1972. Mechanism of activation of human plasminogen by streptokinase. Presence of active center in streptokinase-plasminogen complex. J. Biol. Chem. 247, 1683–1691.PubMedGoogle Scholar
  60. Reed, G.L., Lin, L.F., Parhami-Seren, B., Kussie, P., 1995. Identification of a plasminogen binding region in streptokinase that is necessary for the creation of a functional streptokinase-plasminogen activator complex. Biochemistry 34, 10266–10271.PubMedCrossRefGoogle Scholar
  61. Ringdahl, U., Sjobring, U., 2000. Analysis of plasminogen-binding M proteins of Streptococcus pyogenes. Methods 21, 143–150.PubMedCrossRefGoogle Scholar
  62. Ringdahl, U., Svensson, M., Wistedt, A.C., Renne, T., Kellner, R., Muller-Esterl, W., Sjobring, U., 1998. Molecular co-operation between protein PAM and streptokinase for plasmin acquisition by Streptococcus pyogenes. J. Biol. Chem. 273, 6424–6430.PubMedCrossRefGoogle Scholar
  63. Schick, L.A., Castellino, F.J., 1974. Direct evidence for the generation of an active site in the plasminogen moiety of the streptokinase-human plasminogen activator complex. Biochem. Biophys. Res. Commun. 57, 47–54.PubMedCrossRefGoogle Scholar
  64. Sikri, N., Bardia, A., 2007. A history of streptokinase use in acute myocardial infarction. Tex. Heart Inst. J. 34, 318–327.PubMedGoogle Scholar
  65. Strickland, D.K., Morris, J.P., Castellino, F.J., 1982. Enhancement of the streptokinase-catalyzed activation of human plasminogen by human fibrinogen and its plasminolysis products. Biochemistry 21, 721–728.PubMedCrossRefGoogle Scholar
  66. Summaria, L., Wohl, R.C., Boreisha, I.G., Robbins, K.C., 1982. A virgin enzyme derived from human plasminogen. Specific cleavage of the arginyl-560-valyl peptide bond in the diisopropoxyphosphinyl virgin enzyme by plasminogen activators. Biochemistry 21, 2056–2059.PubMedCrossRefGoogle Scholar
  67. Sun, H., 2006. The interaction between pathogens and the host coagulation system. Physiology (Bethesda) 21, 281–288.CrossRefGoogle Scholar
  68. Sun, H., Ringdahl, U., Homeister, J.W., Fay, W.P., Engleberg, N.C., Yang, A.Y., Rozek, L.S., Wang, X., Sjobring, U., Ginsburg, D., 2004. Plasminogen is a critical host pathogenicity factor for group A streptococcal infection. Science 305, 1283–1286.PubMedCrossRefGoogle Scholar
  69. Sun, H., Wang, X., Degen, J.L., Ginsburg, D., 2009. Reduced thrombin generation increases host susceptibility to group A streptococcal infection. Blood 113, 1358–1364.PubMedCrossRefGoogle Scholar
  70. Tharp, A.C., Laha, M., Panizzi, P., Thompson, M.W., Fuentes-Prior, P., Bock, P.E., 2009. Plasminogen substrate recognition by the streptokinase-plasminogen catalytic complex is facilitated by Arg253, Lys256, and Lys257 in the streptokinase beta-domain and kringle 5 of the substrate. J. Biol. Chem. 284, 19511–19521.PubMedCrossRefGoogle Scholar
  71. Thewes, T., Constantine, K., Byeon, I.J., Llinas, M., 1990. Ligand interactions with the kringle 5 domain of plasminogen. A study by 1H NMR spectroscopy. J. Biol. Chem. 265, 3906–3915.PubMedGoogle Scholar
  72. Urano, T., Sator de Serrano, V., Chibber, B.A., Castellino, F.J., 1987. The control of the urokinase-catalyzed activation of human glutamic acid 1-plasminogen by positive and negative effectors. J. Biol. Chem. 262, 15959–15964.PubMedGoogle Scholar
  73. Urano, T., Sator de Serrano, V., Gaffney, P.J., Castellino, F.J., 1988. Effectors of the activation of human [Glu1]plasminogen by human tissue plasminogen activator. Biochemistry 27, 6522–6528.PubMedCrossRefGoogle Scholar
  74. Verhamme, I.M., Bock, P.E., 2008. Rapid-reaction kinetic characterization of the pathway of streptokinase.plasmin catalytic complex formation. J. Biol. Chem. 283, 26137–26147.PubMedCrossRefGoogle Scholar
  75. Violand, B.N., Byrne, R., Castellino, F.J., 1978. The effect of alpha-,omega-amino acids on human plasminogen structure and activation. J. Biol. Chem. 253, 5395–5401.PubMedGoogle Scholar
  76. Violand, B.N., Castellino, F.J., 1976. Mechanism of the urokinase-catalyzed activation of human plasminogen. J. Biol. Chem. 251, 3906–3912.PubMedGoogle Scholar
  77. Wakeham, N., Terzyan, S., Zhai, P., Loy, J.A., Tang, J., Zhang, X.C., 2002. Effects of deletion of streptokinase residues 48–59 on plasminogen activation. Protein Eng. 15, 753–761.PubMedCrossRefGoogle Scholar
  78. Wang, H., Lottenberg, R., Boyle, M.D., 1995. Analysis of the interaction of group A streptococci with fibrinogen, streptokinase and plasminogen. Microb. Pathog. 18, 153–166.PubMedCrossRefGoogle Scholar
  79. Wang, S., Reed, G.L., Hedstrom, L., 1999. Deletion of Ile1 changes the mechanism of streptokinase: evidence for the molecular sexuality hypothesis. Biochemistry 38, 5232–5240.PubMedCrossRefGoogle Scholar
  80. Wang, S., Reed, G.L., Hedstrom, L., 2000. Zymogen activation in the streptokinase-plasminogen complex. Ile1 is required for the formation of a functional active site. Eur. J. Biochem. 267, 3994–4001.PubMedCrossRefGoogle Scholar
  81. Wang, X., Lin, X., Loy, J.A., Tang, J., Zhang, X.C., 1998. Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. Science 281, 1662–1665.PubMedCrossRefGoogle Scholar
  82. Wiman, B., Lijnen, H.R., Collen, D., 1979. On the specific interaction between the lysine-binding sites in plasmin and complementary sites in α2-antiplasmin and in fibrinogen. Biochim. Biophys. Acta 579, 142–154.PubMedCrossRefGoogle Scholar
  83. Wiman, B., Wallen, P., 1975. Structural relationship between “glutamic acid” and “lysine” forms of human plasminogen and their interaction with the NH2-terminal activation peptide as studied by affinity chromatography. Eur. J. Biochem. 50, 489–494.PubMedCrossRefGoogle Scholar
  84. Wohl, R.C., Sinio, L., Summaria, L., Robbins, K.C., 1983. Comparative activation kinetics of mammalian plasminogens. Biochim. Biophys. Acta 745, 20–31.PubMedCrossRefGoogle Scholar
  85. Wohl, R.C., Summaria, L., Arzadon, L., Robbins, K.C., 1978. Steady state kinetics of activation of human and bovine plasminogens by streptokinase and its equimolar complexes with various activated forms of human plasminogen. J. Biol. Chem. 253, 1402–1407.PubMedGoogle Scholar
  86. Wohl, R.C., Summaria, L., Robbins, K.C., 1980. Kinetics of activation of human plasminogen by different activator species at pH 7.4 and 37°C. J. Biol. Chem. 255, 2005–2013.PubMedGoogle Scholar
  87. Wu, T.P., Padmanabhan, K., Tulinsky, A., Mulichak, A.M., 1991. The refined structure of the ɛ-aminocaproic acid complex of human plasminogen kringle 4. Biochemistry 30, 10589–10594.PubMedCrossRefGoogle Scholar
  88. Yadav, S., Datt, M., Singh, B., Sahni, G., 2008. Role of the 88–97 loop in plasminogen activation by streptokinase probed through site-specific mutagenesis. Biochim. Biophys. Acta 1784, 1310–1318.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PathologyVanderbilt University School of MedicineNashvilleUSA
  2. 2.Institut de Recerca, Hospital de la Santa Creu i Sant PauBarcelonaSpain

Personalised recommendations