Snaclecs (Snake C-Type Lectins) that Inhibit Platelet Receptors

  • Kenneth J. ClemetsonEmail author


One of the major targets for snake venom proteins is haemostasis. This weakens the prey and helps with swallowing and digestion. The venom proteins act either on coagulation factors or on platelets. Snake venom proteins often adapt physiological mechanisms to inhibit or activate platelets. Inhibitory mechanisms are mainly directed against integrins, which is also true of many of the snaclecs described in this chapter. Their main physiological ligands are von Willebrand factor and collagen. GPIb is also a target of snaclecs described as inhibitory but that may be due to the methods of testing as such snaclecs induce thrombocytopenia when tested in vivo. In the case of those targeting integrins they may indeed be inhibitory but platelets may not be their primary target since α2β1 is also present on endothelial and smooth muscle cells and inhibitory molecules are anti-angiostatic.


Snake Venom Platelet Receptor Washed Platelet Venom Protein Venom Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andrews, R.K., Kroll, M.H., Ward, C.M., Rose, J.W., Scarborough, R.M., Smith, A.I., Lopez, J.A., Berndt, M.C., 1996. Binding of a novel 50-kilodalton alboaggregin from Trimeresurus albolabris and related viper venom proteins to the platelet membrane glycoprotein Ib-IX-V complex. Effect on platelet aggregation and glycoprotein Ib-mediated platelet activation. Biochemistry 35, 12629–12639.PubMedCrossRefGoogle Scholar
  2. Chen, Y.L., Tsai, I.H., 1995. Functional and sequence characterization of agkicetin, a new glycoprotein Ib antagonist isolated from Agkistrodon acutus venom. Biochem. Biophys. Res. Commun. 210, 472–477.PubMedCrossRefGoogle Scholar
  3. Chen, Y.L., Tsai, K.W., Chang, T., Hong, T.M., Tsai, I.H., 2000. Glycoprotein Ib-binding protein from the venom of Deinagkistrodon acutus – cDNA sequence, functional characterization, and three-dimensional modeling. Thromb. Haemost. 83, 119–126.PubMedGoogle Scholar
  4. Clemetson, K.J., Morita, T., Kini, R.M., 2009. Scientific and standardization committee communications: classification and nomenclature of snake venom C-type lectins and related proteins. J. Thromb. Haemost. 7, 360.PubMedCrossRefGoogle Scholar
  5. Eble, J.A., Niland, S., Bracht, T., Mormann, M., Peter-Katalinic, J., Pohlentz, G., Stetefeld, J., 2009. The α2β1 integrin-specific antagonist rhodocetin is a cruciform, heterotetrameric molecule. FASEB J. 23, 2917–2927.PubMedCrossRefGoogle Scholar
  6. Eble, J.A., Tuckwell, D.S., 2003. The α2β1 integrin inhibitor rhodocetin binds to the A-domain of the integrin α2 subunit proximal to the collagen-binding site. Biochem. J. 376, 77–85.PubMedCrossRefGoogle Scholar
  7. Fry, B.G., Vidal, N., Norman, J.A., Vonk, F.J., Scheib, H., Ramjan, S.F., Kuruppu, S., Fung, K., Hedges, S.B., Richardson, M.K., Hodgson, W.C., Ignjatovic, V., Summerhayes, R., Kochva, E., 2006. Early evolution of the venom system in lizards and snakes. Nature 439, 584–588.PubMedCrossRefGoogle Scholar
  8. Fujimura, Y., Ikeda, Y., Miura, S., Yoshida, E., Shima, H., Nishida, S., Suzuki, M., Titani, K., Taniuchi, Y., Kawasaki, T., 1995. Isolation and characterization of jararaca GPIb-BP, a snake venom antagonist specific to platelet glycoprotein Ib. Thromb. Haemost. 74, 743–750.PubMedGoogle Scholar
  9. Fukuda, K., Doggett, T.A., Bankston, L.A., Cruz, M.A., Diacovo, T.G., Liddington, R.C., 2002. Structural basis of von Willebrand factor activation by the snake toxin botrocetin. Structure 10, 943–950.PubMedCrossRefGoogle Scholar
  10. Fukuda, K., Doggett, T., Laurenzi, I.J., Liddington, R.C., Diacovo, T.G. 2005. The snake venom protein botrocetin acts as a biological brace to promote dysfunctional platelet aggregation. Nat. Struct. Mol. Biol. 12, 152–159.PubMedCrossRefGoogle Scholar
  11. Fukuda, K., Mizuno, H., Atoda, H., Morita, T., 2000. Crystal structure of flavocetin-A, a platelet glycoprotein Ib-binding protein, reveals a novel cyclic tetramer of C-type lectin-like heterodimers. Biochemistry 39, 1915–1923.PubMedCrossRefGoogle Scholar
  12. Horii, K., Okuda, D., Morita, T., Mizuno, H., 2003. Structural characterization of EMS16, an antagonist of collagen receptor (GPIa/IIa) from the venom of Echis multisquamatus. Biochemistry 42, 12497–12502.PubMedCrossRefGoogle Scholar
  13. Horii, K., Okuda, D., Morita, T., Mizuno, H., 2004. Crystal structure of EMS16 in complex with the integrin α2-I domain. J. Mol. Biol. 341, 519–527.PubMedCrossRefGoogle Scholar
  14. Jasti, J., Paramasivam, M., Srinivasan, A., Singh, T.P., 2004. Crystal structure of echicetin from Echis carinatus (Indian saw-scaled viper) at 2.4A resolution. J. Mol. Biol. 335, 167–176.PubMedCrossRefGoogle Scholar
  15. Kawasaki, T., Fujimura, Y., Usami, Y., Suzuki, M., Miura, S., Sakurai, Y., Makita, K., Taniuchi, Y., Hirano, K., Titani, K., 1996. Complete amino acid sequence and identification of the platelet glycoprotein Ib-binding site of jararaca GPIb-BP, a snake venom protein isolated from Bothrops jararaca. J. Biol. Chem. 271, 10635–10639.PubMedCrossRefGoogle Scholar
  16. Kawasaki, T., Taniuchi, Y., Hisamichi, N., Fujimura, Y., Suzuki, M., Titani, K., Sakai, Y., Kaku, S., Satoh, N., Takenaka, T., Handa, M., Sawai, Y., 1995. Tokaracetin, a new platelet antagonist that binds to platelet glycoprotein ib and inhibits von Willebrand factor-dependent shear- induced platelet aggregation. Biochem. J. 308, 947–953.PubMedGoogle Scholar
  17. Koh, D.C., Armugam, A., Jeyaseelan, K., 2006. Snake venom components and their applications in biomedicine. Cell. Mol. Life Sci. 63, 3030–3041.PubMedCrossRefGoogle Scholar
  18. Lee, W.H., Zhang, Y., 2003. Molecular cloning and characterization of a platelet glycoprotein Ib-binding protein from the venom of Trimeresurus stejnegeri. Toxicon 41, 885–892.PubMedCrossRefGoogle Scholar
  19. Maita, N., Nishio, K., Nishimoto, E., Matsui, T., Shikamoto, Y., Morita, T., Sadler, J.E., Mizuno, H., 2003. Crystal structure of von Willebrand factor A1 domain complexed with snake venom, bitiscetin: insight into glycoprotein Ibα binding mechanism induced by snake venom proteins. J. Biol. Chem. 278, 37777–37781.PubMedCrossRefGoogle Scholar
  20. Marcinkiewicz, C., Lobb, R.R., Marcinkiewicz, M.M., Daniel, J.L., Smith, J.B., Dangelmaier, C., Weinreb, P.H., Beacham, D.A., Niewiarowski, S., 2000. Isolation and characterization of EMS16, a C-lectin type protein from Echis multisquamatus venom, a potent and selective inhibitor of the α2β1 integrin. Biochemistry 39, 9859–9867.PubMedCrossRefGoogle Scholar
  21. Mizuno, H., Fujimoto, Z., Atoda, H., Morita, T., 2001. Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X. Proc. Natl. Acad. Sci. U.S.A. 98, 7230–7234.PubMedCrossRefGoogle Scholar
  22. Mizuno, H., Fujimoto, Z., Koizumi, M., Kano, H., Atoda, H., Morita, T., 1999. Crystal structure of coagulation factor IX-binding protein from habu snake venom at 2.6 Å: implication of central loop swapping based on deletion in the linker region. J. Mol. Biol. 289, 103–112.PubMedCrossRefGoogle Scholar
  23. Morita, T., Atoda, H., Sekiya, F., 1996. Structure and functions of coagulation factor IX/factor X-binding protein isolated from the venom of Trimeresurus flavoviridis. Adv. Exp. Med. Biol. 391, 187–196.PubMedCrossRefGoogle Scholar
  24. Navdaev, A., Dormann, D., Clemetson, J.M., Clemetson, K.J., 2001. Echicetin, a GPIb-binding snake C-type lectin from Echis carinatus, also contains a binding site for IgMκ responsible for platelet agglutination in plasma and inducing signal transduction. Blood 97, 2333–2341.PubMedCrossRefGoogle Scholar
  25. Paaventhan, P., Kong, C., Joseph, J.S., Chung, M.C., Kolatkar, P.R., 2005. Structure of rhodocetin reveals noncovalently bound heterodimer interface. Protein Sci. 14, 169–175.PubMedCrossRefGoogle Scholar
  26. Peng, M., Holt, J.C., Niewiarowski, S., 1994. Isolation, characterization and amino acid sequence of echicetin β-subunit, a specific inhibitor of von Willebrand factor and thrombin interaction with glycoprotein Ib. Biochem. Biophys. Res. Commun. 205, 68–72.PubMedCrossRefGoogle Scholar
  27. Polgar, J., Magnenat, E.M., Peitsch, M.C., Wells, T.N., Saqi, M.S., Clemetson, K.J., 1997. Amino acid sequence of the alpha subunit and computer modelling of the alpha and beta subunits of echicetin from the venom of Echis carinatus (saw-scaled viper). Biochem. J. 323, 533–537.PubMedGoogle Scholar
  28. Sarray, S., Srairi, N., Hatmi, M., Luis, J., Louzir, H., Regaya, I., Slema, H., Marvaldi, J., El Ayeb, M., Maffakchi, N., 2003. Lebecetin, a potent antiplatelet C-type lectin from Macrovipera lebetina venom. Biochim. Biophys. Acta 1651, 30–40.CrossRefGoogle Scholar
  29. Shin, Y., Okuyama, I., Hasegawa, J., Morita, T., 2000. Molecular cloning of glycoprotein Ib-binding protein, flavocetin-A, which inhibits platelet aggregation. Thromb. Res. 99, 239–247.PubMedCrossRefGoogle Scholar
  30. Staniszewska, I., Walsh, E.M., Rothman, V.L., Gaathon, A., Tuszynski, G.P., Calvete, J.J., Lazarovici, P., Marcinkiewicz, C., 2009. Effect of VP12 and viperistatin on inhibition of collagen receptors-dependent melanoma metastasis. Cancer Biol. Therapy 8, 1507–1516.CrossRefGoogle Scholar
  31. Taniuchi, Y., Kawasaki, T., Fujimura, Y., Suzuki, M., Titani, K., Sakai, Y., Kaku, S., Hisamichi, N., Satoh, N., Takenaka, T., Handa, M., Sawai, Y., 1995. Flavocetin-A and -B, two high molecular mass glycoprotein Ib binding proteins with high affinity purified from Trimeresurus flavoviridis venom, inhibit platelet aggregation at high shear stress. Biochim. Biophys. Acta 1244, 331–338.PubMedCrossRefGoogle Scholar
  32. Valentin, E., Lambeau, G., 2000. What can venom phospholipases A2 tell us about the functional diversity of mammalian secreted phospholipases A2? Biochimie 82, 815–831.PubMedCrossRefGoogle Scholar
  33. Wang, R., Kini, R.M., Chung, M.C., 1999. Rhodocetin, a novel platelet aggregation inhibitor from the venom of Calloselasma rhodostoma (Malayan pit viper): synergistic and noncovalent interaction between its subunits. Biochemistry 38, 7584–7593.PubMedCrossRefGoogle Scholar
  34. Zha, X.D., Liu, J., Xu, K.S., 2004. cDNA cloning, sequence analysis, and recombinant expression of akitonin β, a C-type lectin-like protein from Agkistrodon acutus. Acta Pharmacol. Sin. 25, 372–377.PubMedGoogle Scholar
  35. Zhong, S.R., Jin, Y., Wu, J.B., Chen, R.Q., Jia, Y.H., Wang, W.Y., Xiong, Y.L., Zhang, Y., 2006. Characterization and molecular cloning of dabocetin, a potent antiplatelet C-type lectin-like protein from Daboia russellii siamensis venom. Toxicon 47, 104–112.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of HaematologyUniversity of Berne, InselspitalBerneSwitzerland

Personalised recommendations