Anti-Angiogenesis and Disintegrins

  • Stephen SwensonEmail author
  • Radu Minea
  • Samuel Zidovetzki
  • Corey Helchowski
  • Fritz Costa
  • Francis S. Markland


Angiogenesis is a critical process in tumor and disease progression. A number of features are central to both tumor growth and development, and the recruitment and invasion of a growing vascular network supplying the tumor with nutrients and a mechanism of escape to allow meastatic growth. One class of molecules important to both tumor growth and blood vessel recruitment are a family of cell surface receptors identified as integrins. Integrins are α/β heterodimeric glycoproteins in which the different α subunits combine with distinct β subunits resulting in a range of specificities toward various extracellular matrix (ECM) proteins. The RGD sequence found in a number of ECM proteins is recognized by several classes of integrins, allowing for linkage of cytoskeletal proteins associated with the integrins to the ECM which leads to involvement in bi-directional signaling that displays profound effects on cellular functions. Among these integrin mediated interactions are the adhesion of both endothelial cells and cancer cells to ECM proteins, an interaction that is integral to metastasis, tumor growth and angiogensis. Antibodies targeted to integrins have been shown to retard tumor growth and subsequent tumor induced angiogenesis. One concern with this approach is that the antibody targets a single integrin, which may allow the tumor to utilize other non-targeted integrins to circumvent this type of blockage. A more broad spectrum agent is available that binds to and blocks the function of several different integrins at a time, this agents is identified as a disintegrin. Originally purified from the venom of Viperidae family of snakes, a disintegrins role in nature is presumably to block platelet aggregation following envenomation based on interaction of an integrin on the activated platelet surface with an RGD sequence in the disintegrin. It has been observed that integrins overexpressed on some tumor types and angiogenic vasculature have similar affinity for RGD motifs found in ECM proteins. Based on disintegrin structure we have developed a recombinant form of a snake venom disintegrin, which we call vicrostatin (VCN). VCN is a potent anti-angiogenic/anti-tumor agent in in vitro and in vivo laboratory studies. Further development of the recombinant venom derived disintegrin along with new technology looking at additional disintegrin-like proteins may offer a novel therapeutic approach in targeting tumor induced angiogenesis.


Vascular Endothelial Growth Factor Actin Cytoskeleton Human Umbilical Vein Endothelial Cell Human Umbilical Vein Endothelial Cell Cell Tobacco Etch Virus Protease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Lesley Rakowski, Kyle Brodmann and Barbra Rubino for technical assistance. In addition the authors would like to acknowledge grant support from; National Institutes of Health (FM, 1R41 CA126001-01A1 and 1R41 CA121452-01A1), California Breast Cancer Research Program (SS, 12IB-0153) and Komen for the Cure (FM, BCTR0707423).


  1. Adler, M., Lazarus, R.A., Dennis, M.S., Wagner, G., 1991. Solution structure of kistrin, a potent platelet aggregation inhibitor and GP IIb-IIIa antagonist. Science 253, 445–448.PubMedCrossRefGoogle Scholar
  2. Aragon-Ching, J.B., Dahut, W.L., 2008. The role of angiogenesis inhibitors in prostate cancer. Cancer. J. 14, 20–25.PubMedCrossRefGoogle Scholar
  3. Aragon-Ching, J.B., Dahut, W.L., 2009. VEGF inhibitors and prostate cancer therapy. Curr. Mol. Pharmacol. 2, 161–168.PubMedGoogle Scholar
  4. Banno, A., Ginsberg, M.H., 2008. Integrin activation. Biochem. Soc. Trans. 36, 229–34.PubMedCrossRefGoogle Scholar
  5. Bayless, K.J., Salazar, R., Davis, G.E., 2000. RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the αvβ3 and α5β1 integrins. Am. J. Pathol. 156, 1673–1683.PubMedCrossRefGoogle Scholar
  6. Beekman, K.W., Colevas, A.D., Cooney, K., Dipaola, R., Dunn, R.L., Gross, M., Keller, E.T., Pienta, K.J., Ryan, C.J., Smith, D., Hussain, M., 2006. Phase II evaluations of cilengitide in asymptomatic patients with androgen-independent prostate cancer: scientific rationale and study design. Clin. Genitourin. Cancer 4, 299–302.PubMedCrossRefGoogle Scholar
  7. Beekman, K.W., Hussain, M., 2006. Targeted approaches for the management of metastatic prostate cancer. Curr. Oncol. Rep. 8, 206–212.PubMedCrossRefGoogle Scholar
  8. Boehm, T., Folkman, J., Browder, T., O’Reilly, M.S., 1997. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature 390, 404–407.PubMedCrossRefGoogle Scholar
  9. Brooks, P.C., Montgomery, A.M., Rosenfeld, M., Reisfeld, R.A., Hu, T., Klier, G., Cheresh, D.A., 1994. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164.PubMedCrossRefGoogle Scholar
  10. Brown, M.C., Eble, J.A., Calvete, J.J., Marcinkiewicz, C., 2009. Structural requirements of KTS-disintegrins for inhibition of α1β1 integrin. Biochem. J. 417, 95–101.PubMedCrossRefGoogle Scholar
  11. Calderwood, D.A., 2004. Talin controls integrin activation. Biochem. Soc. Trans. 32, 434–437.PubMedCrossRefGoogle Scholar
  12. Calvete, J.J., Marcinkiewicz, C., Monleon, D., Esteve, V., Celda, B., Juarez, P., Sanz, L., 2005. Snake venom disintegrins: evolution of structure and function. Toxicon 45, 1063–1074.PubMedCrossRefGoogle Scholar
  13. Chen, H.X., Cleck, J.N., 2009. Adverse effects of anticancer agents that target the VEGF pathway. Nat. Rev. Clin. Oncol. 6, 465–477.PubMedCrossRefGoogle Scholar
  14. Cheresh, D.A., 1992. Structural and biologic properties of integrin-mediated cell adhesion. Clin. Lab. Med. 12, 217–236.PubMedGoogle Scholar
  15. Choueiri, T.K., Duh, M.S., Clement, J., Brick, A.J., Rogers, M.J., Kwabi, C., Shah, K., Percy, A. G., Antras, L., Jayawant, S.S., Chen, K., Wang, S.T., Luka, A., Neary, M.P., McDermott, D., Oh, W.K., 2009. Angiogenesis inhibitor therapies for metastatic renal cell carcinoma: effectiveness, safety and treatment patterns in clinical practice-based on medical chart review. BJU Int. 105(9), 1247–1254.Google Scholar
  16. Choy, M., Rafii, S., 2001. Role of angiogenesis in the progression and treatment of prostate cancer. Cancer Invest. 19, 181–91.PubMedCrossRefGoogle Scholar
  17. Concato, J., Jain, D., Uchio, E., Risch, H., Li, W.W., Wells, C.K., 2009. Molecular markers and death from prostate cancer. Ann. Intern. Med. 150, 595–603.PubMedCrossRefGoogle Scholar
  18. Cooper, C.R., Chay, C.H., Pienta, K.J., 2002. The role of αvβ3 in prostate cancer progression. Neoplasia 4, 191–194.PubMedCrossRefGoogle Scholar
  19. Courtney, K.D., Choueiri, T.K., 2009. Optimizing recent advances in metastatic renal cell carcinoma. Curr. Oncol. Rep. 11, 218–226.PubMedCrossRefGoogle Scholar
  20. Cousins, G.R., Sudo, Y., Friedrichs, G.R., Markland, F.S., Lucchesi, B.R., 1995. Contortrostatin prevents reocclusion after thrombolytic therapy in a canine model of carotid artery thrombosis. FASEB J. 9, A938.Google Scholar
  21. Cox, M.C., Permenter, M., Figg, W.D., 2005. Angiogenesis and prostate cancer: important laboratory and clinical findings. Curr. Oncol. Rep. 7, 215–219.PubMedCrossRefGoogle Scholar
  22. Cress, A.E., Rabinovitz, I., Zhu, W., Nagle, R.B., 1995. The alpha 6 beta 1 and alpha 6 beta 4 integrins in human prostate cancer progression. Cancer Metastasis Rev. 14, 219–228.PubMedCrossRefGoogle Scholar
  23. Demirgoz, D., Garg, A., Kokkoli, E., 2008. PR_b-targeted PEGylated liposomes for prostate cancer therapy. Langmuir 24, 13518–13524.PubMedCrossRefGoogle Scholar
  24. Dennis, M.S., Henzel, W.J., Pitti, R.M., Lipari, M.T., Napier, M.A., Deisher, T.A., Bunting, S., Lazarus, R.A., 1990. Platelet glycoprotein IIb/IIIa protein antagonists from snake venoms: evidence for a family of platelet-aggregation inhibitors. Proc. Natl. Acad. Sci. U.S.A. 87, 2471–2475.PubMedCrossRefGoogle Scholar
  25. Di Lorenzo, G., De Placido, S., 2006. Hormone refractory prostate cancer (HRPC): present and future approaches of therapy. Int. J. Immunopathol. Pharmacol. 19, 11–34.PubMedGoogle Scholar
  26. Ebos, J.M., Lee, C.R., Cruz-Munoz, W., Bjarnason, G.A., Christensen, J.G., Kerbel, R.S., 2009. Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15, 232–239.PubMedCrossRefGoogle Scholar
  27. Erbersdobler, A., Isbarn, H., Dix, K., Steiner, I., Schlomm, T., Mirlacher, M., Sauter, G., Haese, A., 2009. Prognostic value of microvessel density in prostate cancer: a tissue microarray study. World J. Urol. In PressGoogle Scholar
  28. Fox, W.D., Higgins, B., Maiese, K.M., Drobnjak, M., Cordon-Cardo, C., Scher, H.I., Agus, D.B., 2002. Antibody to vascular endothelial growth factor slows growth of an androgen-independent xenograft model of prostate cancer. Clin. Cancer Res. 8, 3226–3231.PubMedGoogle Scholar
  29. Friedlander, M., Brooks, P.C., Shaffer, R.W., Kincaid, C.M., Varner, J.A., Cheresh, D.A., 1995. Definition of two angiogenic pathways by distinct αv integrins. Science 270, 1500–1502.PubMedCrossRefGoogle Scholar
  30. Fujii, G., 1996. Liposomal amphotericin B(AmBisome): realization of the drug delivery concept, in: Rosoff, M. (Ed.), Vesicles. Marcel Dekker, New York, pp. 491–526.Google Scholar
  31. Fujii, Y., Okuda, D., Fujimoto, Z., Horii, K., Morita, T., Mizuno, H., 2003. Crystal structure of trimestatin, a disintegrin containing a cell adhesion recognition motif RGD. J. Mol. Biol. 332, 1115–1122.PubMedCrossRefGoogle Scholar
  32. Garrison, J.B., Kyprianou, N., 2004. Novel targeting of apoptosis pathways for prostate cancer therapy. Curr. Cancer Drug Targets 4, 85–95.PubMedCrossRefGoogle Scholar
  33. Gasparini, G., Brooks, P.C., Biganzoli, E., Vermeulen, P.B., Bonoldi, E., Dirix, L.Y., Ranieri, G., Miceli, R., Cheresh, D.A., 1998. Vascular integrin αvβ3: a new prognostic indicator in breast cancer. Clin. Cancer. Res. 4, 2625–2634.PubMedGoogle Scholar
  34. Gleave, M., Miyake, H., Chi, K., 2005. Beyond simple castration: targeting the molecular basis of treatment resistance in advanced prostate cancer. Cancer Chemother. Pharmacol. 56 Suppl 1, 47–57.PubMedCrossRefGoogle Scholar
  35. Goel, H.L., Li, J., Kogan, S., Languino, L.R., 2008. Integrins in prostate cancer progression. Endocr. Relat. Cancer 15, 657–664.PubMedCrossRefGoogle Scholar
  36. Golubkov, V., Hawes, D., Markland, F.S., 2003. Anti-angiogenic activity of contortrostatin, a disintegrin from Agkistrodon contortrix contortrix snake venom. Angiogenesis 6, 213–224.PubMedCrossRefGoogle Scholar
  37. Gould, R.J., Polokoff, M.A., Friedman, P.A., Huang, T.F., Holt, J.C., Cook, J.J., Niewiarowski, S., 1990. Disintegrins: a family of integrin inhibitory proteins from viper venoms. Proc. Soc. Exptl. Biol. Med. 195, 168–171.Google Scholar
  38. Grothey, A., Galanis, E., 2009. Targeting angiogenesis: progress with anti-VEGF treatment with large molecules. Nat. Rev. Clin. Oncol. 6, 507–518.PubMedCrossRefGoogle Scholar
  39. Gutheil, J.C., Campbel, T.N., Pierce, P.R., Watkins, J.D., Huse, W.D., Bodkin, D.J., Cheresh, D.A., 2000. Targeted antiangiogenic therapy for cancer using vitaxin: a humanized monoclonal antibody to the integrin αvβ3. Clin. Cancer Res. 6, 3056–3061.PubMedGoogle Scholar
  40. Harris, W.P., Mostaghel, E.A., Nelson, P.S., Montgomery, B., 2009. Androgen deprivation therapy: progress in understanding mechanisms of resistance and optimizing androgen depletion. Nat. Clin. Pract. Urol. 6, 76–85.PubMedCrossRefGoogle Scholar
  41. Hiles, J.J., Kolesar, J.M., 2008. Role of sunitinib and sorafenib in the treatment of metastatic renal cell carcinoma. Am. J. Health Syst. Pharm. 65, 123–131.PubMedCrossRefGoogle Scholar
  42. Hood, J.D., Bednarski, M., Frausto, R., Guccione, S., Reisfeld, R.A., Xiang, R., Cheresh, D.A., 2002. Tumor regression by targeted gene delivery to the neovasculature. Science 296, 2404–2407.PubMedCrossRefGoogle Scholar
  43. Huang, T.F., Holt, J.C., Kirby, E.R., Niewiarowski, S., 1989. Trigramin: primary structure and its inhibition of von willebrand factor binding to glycoprotein IIb-IIIa complex on human platelets. Biochemistry 28, 661–666.PubMedCrossRefGoogle Scholar
  44. Humphries, M.J., 1996. Integrin activation: the link between ligand binding and signal transduction. Curr. Opin. Cell Biol. 8, 632–640.PubMedCrossRefGoogle Scholar
  45. Hynes, R.O., 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69, 11–25.PubMedCrossRefGoogle Scholar
  46. Jameson, D.M., Seifried, S.E., 1999. Quantification of protein–protein interactions using fluorescence polarization. Methods 19, 222–233.PubMedCrossRefGoogle Scholar
  47. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Thun, M.J., 2009. Cancer statistics, 2009. CA. Cancer J. Clin. 59, 225–249.CrossRefGoogle Scholar
  48. Jimenez, J.A., Kao, C., Raikwar, S., Gardner, T.A., 2006. Current status of anti-angiogenesis therapy for prostate cancer. Urol. Oncol. 24, 260–268.PubMedCrossRefGoogle Scholar
  49. Kerbel, R.S., 2001a. Clinical trials of antiangiogenic drugs: opportunities, problems, and assessment of initial results. J. Clin. Oncol. 19, 45S–51S.PubMedGoogle Scholar
  50. Kerbel, R. S., 2001b. Molecular and physiologic mechanisms of drug resistance in cancer: an overview. Cancer Metastasis Rev. 20, 1–2.PubMedCrossRefGoogle Scholar
  51. Kumar, C.C., 2003. Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr. Drug. Targets. 4, 123–311.PubMedCrossRefGoogle Scholar
  52. Kwabi-Addo, B., Ozen, M., Ittmann, M., 2004. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr. Relat. Cancer 11, 709–724.PubMedCrossRefGoogle Scholar
  53. Liotta, L.A., Kohn, E.C., 2001. The microenvironment of the tumour-host interface. Nature 411, 375–379.PubMedCrossRefGoogle Scholar
  54. Madan, R.A., Dahut, W.L., 2009. Angiogenesis inhibition in the treatment of prostate cancer. Anticancer Agents Med. Chem. 27, 5627–5633.Google Scholar
  55. Marcinkiewicz, C., Vijay-Kumar, S., McLane, M.A., Niewiarowski, S., 1997. Significance of RGD loop and C-terminal domain of echistatin for recognition of αIIbβ3 and αvβ3 integrins and expression of ligand-induced binding site. Blood 90, 1565–1575.PubMedGoogle Scholar
  56. Markland, F.S., Shieh, K., Zhou, Q., Golubkov, V., Sherwin, R.P., Richters, V., Sposto, R., 2001. A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model. Haemostasis 31, 183–191.PubMedGoogle Scholar
  57. McLane, M.A., Joerger, T., Mahmoud, A., 2008. Disintegrins in health and disease. Front. Biosci. 13, 6617–6637.PubMedCrossRefGoogle Scholar
  58. McLane, M.A., Marcinkiewicz, C., Vijay-Kumar, S., Wierzbicka-Patynowski, I., Niewiarowski, S., 1998. Viper venom disintegrins and related molecules. Proc. Soc. Exp. Biol. Med. 219, 109–119.PubMedGoogle Scholar
  59. Merseburger, A.S., Simon, A., Waalkes, S., Kuczyk, M.A., 2009. Sorafenib reveals efficacy in sequential treatment of metastatic renal cell cancer. Expert Rev. Anticancer Ther. 9, 1429–1434.PubMedCrossRefGoogle Scholar
  60. Minea, R., Swenson, S., Costa, F., Chen, T.C., Markland, F.S., 2005. Development of a novel recombinant disintegrin, contortrostatin, as an effective anti-tumor and anti-angiogenic agent. Pathophysiol. Haemost. Thromb. 34, 177–183.PubMedCrossRefGoogle Scholar
  61. Montagnani, F., Migali, C., Fiorentini, G., 2009. Progression-free survival in bevacizumab-based first-line treatment for patients with metastatic colorectal cancer: is it a really good end point? J. Clin. Oncol. 27, e132–e133; author reply e134–e135.PubMedCrossRefGoogle Scholar
  62. Mucci, L.A., Powolny, A., Giovannucci, E., Liao, Z., Kenfield, S.A., Shen, R., Stampfer, M.J., Clinton, S.K., 2009. Prospective study of prostate tumor angiogenesis and cancer-specific mortality in the health professionals follow-up study. J. Clin. Oncol. 9, 1070–1078.Google Scholar
  63. Nemeth, J.A., Cher, M.L., Zhou, Z., Mullins, C., Bhagat, S., Trikha, M., 2003. Inhibition of αvβ3 integrin reduces angiogenesis, bone turnover, and tumor cell proliferation in experimental prostate cancer bone metastases. Clin. Exp. Metastasis 20, 413–420.PubMedCrossRefGoogle Scholar
  64. Niewiarowski, S., McLane, M.A., Kloczewiak, M., Stewart, G.J., 1994. Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin. Hematol. 31, 289–300.PubMedGoogle Scholar
  65. Paez-Ribes, M., Allen, E., Hudock, J., Takeda, T., Okuyama, H., Vinals, F., Inoue, M., Bergers, G., Hanahan, D., Casanovas, O., 2009. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15, 220–231.PubMedCrossRefGoogle Scholar
  66. Pallares, J., Rojo, F., Iriarte, J., Morote, J., Armadans, L.I., de Torres, I., 2006. Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues. Histol. Histopathol. 21, 857–865.PubMedGoogle Scholar
  67. Phillips, D.R., Charo, I.F., Scarborough, R.M., 1991. GP IIb-IIIa: the responsive integrin. Cell 65, 359–362.PubMedCrossRefGoogle Scholar
  68. Pignatelli, M., Cardillo, M.R., Hanby, A., Stamp, G.W., 1992. Integrins and their accessory adhesion molecules in mammary carcinomas: loss of polarization in poorly differentiated tumors. Human Pathol. 23, 1159–1166.CrossRefGoogle Scholar
  69. Pinski, J., Markland, F., Wang, Q., Horiatis, D., Swenson, S., Costa, F. (2003). A novel therapy for prostate cancer based on the disintegrin contortrostatin. ASCO Annual Meeting. Chicago, IL.Google Scholar
  70. Polnaszek, N., Kwabi-Addo, B., Peterson, L.E., Ozen, M., Greenberg, N.M., Ortega, S., Basilico, C., Ittmann, M., 2003. Fibroblast growth factor 2 promotes tumor progression in an autochthonous mouse model of prostate cancer. Cancer Res. 63, 5754–5760.PubMedGoogle Scholar
  71. Pyrko, P., Wang, W., Markland, F.S., Swenson, S.D., Schmitmeier, S., Schonthal, A.H., Chen, T.C., 2005. The role of contortrostatin, a snake venom disintegrin, in the inhibition of tumor progression and prolongation of survival in a rodent glioma model. J. Neurosurg. 103, 526–537.PubMedCrossRefGoogle Scholar
  72. Ranieri, G., Patruno, R., Ruggieri, E., Montemurro, S., Valerio, P., Ribatti, D., 2006. Vascular endothelial growth factor (VEGF) as a target of bevacizumab in cancer: from the biology to the clinic. Curr. Med. Chem. 13, 1845–1857.PubMedCrossRefGoogle Scholar
  73. Reardon, D.A., Fink, K.L., Mikkelsen, T., Cloughesy, T.F., O’Neill, A., Plotkin, S., Glantz, M., Ravin, P., Raizer, J.J., Rich, K.M., Schiff, D., Shapiro, W.R., Burdette-Radoux, S., Dropcho, E.J., Wittemer, S.M., Nippgen, J., Picard, M., Nabors, L.B., 2008. Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J. Clin. Oncol. 26, 5610–5617.PubMedCrossRefGoogle Scholar
  74. Romanov, V.I., Goligorsky, M.S., 1999. RGD-recognizing integrins mediate interactions of human prostate carcinoma cells with endothelial cells in vitro. Prostate 39, 108–118.PubMedCrossRefGoogle Scholar
  75. Ruoslahti, E., 1991. Integrins. J. Clin. Invest. 87, 1–5.PubMedCrossRefGoogle Scholar
  76. Sanz, L., Chen, R.Q., Perez, A., Hilario, R., Juarez, P., Marcinkiewicz, C., Monleon, D., Celda, B., Xiong, Y.L., Perez-Paya, E., Calvete, J.J., 2005. cDNA cloning and functional expression of jerdostatin, a novel RTS-disintegrin from Trimeresurus jerdonii and a specific antagonist of the α1β1 integrin. J. Biol. Chem. 280, 40714–40722.PubMedCrossRefGoogle Scholar
  77. Saudek, V., Atkinson, R.A., Lepage, P., Pelton, J.T., 1991. The secondary structure of echistatin from 1H-NMR. Eur. J. Biochem. 202, 329–338.PubMedCrossRefGoogle Scholar
  78. Scarborough, R.M., Rose, J.W., Naughton, M.A., Phillips, D.R., Nannizzi, L., Arfsten, A., Campbell, A.M., Charo, I.F., 1993. Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J. Biol. Chem. 268, 1058–1065.PubMedGoogle Scholar
  79. Sharifi, N., Dahut, W.L., Figg, W.D., 2008. The genetics of castration-resistant prostate cancer: what can the germline tell us? Clin. Cancer Res. 14, 4691–4693.PubMedCrossRefGoogle Scholar
  80. Shebuski, R.J., Ramjit, D.R., Bencen, G.H., Polokoff, M.A., 1989. Characterization and platelet inhibitor activity of bitistatin, a potent arginine-glycine-aspartic acid-containing peptide from the venom of viper Bitis arietans. J. Biol. Chem. 264, 21550–21556.PubMedGoogle Scholar
  81. Stoeltzing, O., Liu, W., Reinmuth, N., Fan, F., Parry, G.C., Parikh, A.A., McCarty, M.F., Bucana, C.D., Mazar, A.P., Ellis, L.M., 2003. Inhibition of integrin α5β1 function with a small peptide (ATN-161) plus continuous 5-FU infusion reduces colorectal liver metastases and improves survival in mice. Int. J. Cancer 104, 496–503.PubMedCrossRefGoogle Scholar
  82. Strohmeyer, D., Strauss, F., Rossing, C., Roberts, C., Kaufmann, O., Bartsch, G., Effert, P., 2004. Expression of bFGF, VEGF and c-met and their correlation with microvessel density and progression in prostate carcinoma. Anticancer Res. 24, 1797–1804.PubMedGoogle Scholar
  83. Strömblad, S., Becker, J.C., Yebra, M., Brooks, P.C., Cheresh, D. A., 1996. Suppression of p53 activity and p21WAF1/CIP1 expression by vascular cell integrin αvβ3 during angiogenesis. J. Clin. Invest. 98, 426–433.PubMedCrossRefGoogle Scholar
  84. Sun, X.T., Ding, Y.T., Yan, X.G., Wu, L.Y., Li, Q., Cheng, N., Qiu, Y.D., Zhang, M.Y., 2004. Angiogenic synergistic effect of basic fibroblast growth factor and vascular endothelial growth factor in an in vitro quantitative microcarrier-based three-dimensional fibrin angiogenesis system. World J. Gastroenterol. 10, 2524–2528.PubMedGoogle Scholar
  85. Sun, Y.X., Fang, M., Wang, J., Cooper, C.R., Pienta, K.J., Taichman, R.S., 2007. Expression and activation of αvβ3 integrins by SDF-1/CXC12 increases the aggressiveness of prostate cancer cells. Prostate 67, 61–73.PubMedCrossRefGoogle Scholar
  86. Swenson, S., Costa, F., Minea, R., Sherwin, R.P., Ernst, W., Fujii, G., Yang, D., Markland, F.S., Jr., 2004. Intravenous liposomal delivery of the snake venom disintegrin contortrostatin limits breast cancer progression. Mol. Cancer. Ther. 3, 499–511.PubMedGoogle Scholar
  87. Trikha, M., De Clerck, Y.A., Markland, F.S., 1994a. Contortrostatin, a snake venom disintegrin, inhibits β1 integrin-mediated human metastatic melanoma cell adhesion and blocks experimental metastasis. Cancer Res. 54, 4993–4998.PubMedGoogle Scholar
  88. Trikha, M., Rote, W.E., Manley, P.J., Lucchesi, B.R., Markland, F.S., 1994b. Purification and characterization of platelet aggregation inhibitors from snake venoms. Thromb. Res. 73, 39–52.PubMedCrossRefGoogle Scholar
  89. van Moorselaar, R.J., Voest, E.E., 2002. Angiogenesis in prostate cancer: its role in disease progression and possible therapeutic approaches. Mol. Cell. Endocrinol. 197, 239–250.PubMedCrossRefGoogle Scholar
  90. Weidner, N., Carroll, P.R., Flax, J., Blumenfeld, W., Folkman, J., 1993. Tumor angiogenesis correlates with metastasis in invasive prostate carcinoma. Am. J. Pathol. 143, 401–409.PubMedGoogle Scholar
  91. Witkowski, C.M., Rabinovitz, I., Nagle, R.B., Affinito, K.S., Cress, A.E., 1993. Characterization of integrin subunits, cellular adhesion and tumorgenicity of four human prostate cell lines. J. Cancer. Res. Clin. Oncol. 119, 637–644.PubMedCrossRefGoogle Scholar
  92. Woodle, M.C., 1993. Surface-modified liposomes: assessment and characterization for increased stability and prolonged blood circulation. Chem. Phys. Lipids 64, 249–262.PubMedCrossRefGoogle Scholar
  93. Wu, I., Moses, M.A., 2000. Angiogenic molecules and mechanisms in breast cancer. Curr. Oncol. Rep. 2, 566–571.PubMedCrossRefGoogle Scholar
  94. Xiong, J.P., Stehle, T., Goodman, S.L., Arnaout, M.A., 2003. New insights into the structural basis of integrin activation. Blood 102, 1155–1159.PubMedCrossRefGoogle Scholar
  95. Yahalom, D., Wittelsberger, A., Mierke, D.F., Rosenblatt, M., Alexander, J.M., Chorev, M., 2002. Identification of the principal binding site for RGD-containing ligands in the αvβ3 integrin: a photoaffinity cross-linking study. Biochemistry 41, 8321–8331.PubMedCrossRefGoogle Scholar
  96. Yasuda, T., Gold, H.K., Leinbach, R.C., Yaoita, H., Fallon, J.T., Guerrero, L., Napier, M.A., Bunting, S., Collen, D., 1991. Kistrin, a polypeptide platelet GPIIb/IIIa receptor antagonist, enhances and sustains coronary arterial thrombolysis with recombinant tissue-type plasminogen activator in a canine preparation. Circulation 83, 1038–1047.PubMedCrossRefGoogle Scholar
  97. Zheng, D.Q., Woodard, A.S., Fornaro, M., Tallini, G., Languino, L.R., 1999. Prostatic carcinoma cell migration via αvβ3 integrin is modulated by a focal adhesion kinase pathway. Cancer Res. 59, 1655–1664.PubMedGoogle Scholar
  98. Zhou, Q., Nakada, M.T., Arnold, C., Markland, F.S., 1999. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits angiogenesis. Angiogenesis 3, 259–269.PubMedCrossRefGoogle Scholar
  99. Zhou, Q., Nakada, M.T., Brooks, P.C., Swenson, S.D., Ritter, M.R., Argounova, S., Arnold, C., Markland, F.S., 2000a. Contortrostatin, a homodimeric disintegrin, binds to integrin αvβ5. Biochem. Biophys. Res. Commun. 267, 350–355.PubMedCrossRefGoogle Scholar
  100. Zhou, Q., Sherwin, R.P., Parrish, C., Richters, V., Groshen, S.G., Tsao-Wei, D., Markland, F.S., 2000b. Contortrostatin, a dimeric disintegrin from Agkistrodon contortrix contortrix, inhibits breast cancer progression. Breast Cancer Res. Treat. 61, 249–260.PubMedCrossRefGoogle Scholar
  101. Zhu, A.X., Duda, D.G., Sahani, D.V., Jain, R.K., 2009. Development of sunitinib in hepatocellular carcinoma: rationale, early clinical experience, and correlative studies. Cancer J. 15, 263–268.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Stephen Swenson
    • 1
    Email author
  • Radu Minea
    • 1
  • Samuel Zidovetzki
    • 1
  • Corey Helchowski
    • 1
  • Fritz Costa
    • 1
  • Francis S. Markland
    • 2
  1. 1.USC/Norris Comprehensive Cancer CenterUniversity of Southern California, Keck School of Medicine, Cancer Research Laboratory #106Los AngelesUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of Southern California, Keck School of Medicine, Cancer Research Laboratory #106Los AngelesUSA

Personalised recommendations