Anticoagulant Phospholipases A2 Which Bind to the Specific Soluble Receptor Coagulation Factor Xa

  • Grazyna FaureEmail author
  • Haijin Xu
  • Frederick Saul


This review will focus on Viperidae venom secreted Phospholipases A2 (sPLA2s) that exert an anticoagulant effect by a non-enzymatic, phospholipid-independent mechanism through direct binding to human coagulation factor Xa (FXa). We present the potential FXa-binding site of these anticoagulant PLA2s and the potential PLA2-binding site of FXa based on molecular docking calculations, site-directed mutagenesis and SPR affinity binding studies. We also discuss the structures of recently crystallized natural isoforms of PLA2 which interact with FXa with different affinity and which differ in anticoagulant activity. The three-dimensional structure of the PLA2 isoforms helps to explain the role of natural mutations in the binding mode of PLA2 with FXa and will be useful in structure-based design of non-competitive FXa inhibitors as potential new anticoagulant drugs.


Snake Venom Anticoagulant Activity Binding Loop Prothrombinase Complex PLA2 Enzyme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ambrosini, G., Plescia, J., Chu, K.C., High, K.A., Altieri, D.C., 1997. Activation-dependent exposure of the inter-EGF sequence Leu83-Leu88 in factor Xa mediates ligand binding to effector cell protease receptor-1. J. Biol. Chem. 272, 8340–8345.CrossRefPubMedGoogle Scholar
  2. Arni, R.K., Ward, R.J., 1996. Phospholipases A2 – a structural review. Toxicon 34, 827–841.CrossRefPubMedGoogle Scholar
  3. Babu, A.S., Gowda, T.V., 1994. Dissociation of enzymatic activity from toxic properties of the most basic phospholipase A2 from Vipera russelli snake venom by guanidination of lysine residues. Toxicon, 32, 749–752.CrossRefPubMedGoogle Scholar
  4. Berg, O.G., Gelb, M.H., Tsai, M.D., Jain, M.K., 2001. Interfacial enzymology: the secreted phospholipases A2-paradigm. Chem. Rev. 101, 2613–2653.CrossRefPubMedGoogle Scholar
  5. Boilard, E., Bourgoin, S.G., Bernatchez, C., Surette, M.E., 2003. Identification of an autoantigen on the surface of apoptotic human T cells as a new protein interacting with inflammatory group IIA phospholipase A2. Blood, 102, 2901–2909.CrossRefPubMedGoogle Scholar
  6. 2.
    Carredano, E., Westerlund, B., Persson, B., Saarinen, M., Ramaswamy, S., Eaker, D., Eklund, H., 1998. The three-dimensional structures of two toxins from snake venom throw light on the anticoagulant and neurotoxic sites of phospholipase A2. Toxicon 36, 75–92.CrossRefPubMedGoogle Scholar
  7. Chioato, L., Ward, R.J., 2004. Mapping structural determinants of biological activities in snake venom phospholipases A2 by sequence analysis and site directed mutagenesis. Toxicon, 42, 869–883.CrossRefGoogle Scholar
  8. Davie, E.W., 1995. Biochemical and molecular aspects of the coagulation cascade. Thromb. Haemost. s74, 1–6.Google Scholar
  9. Dennis, E.A., 1994. Diversity of group types, regulation, and function of phospholipases A2. J. Biol. Chem. 269, 13057–13060.PubMedGoogle Scholar
  10. Dennis, E.A., 1997. The growing phospholipase A2 superfamily of signal transduction enzymes, Trends Biochem. Sci. 22, 1–2.CrossRefPubMedGoogle Scholar
  11. Deregnaucourt, C., Schrevel, J., 2000. Bee venom phospholipase A2 induces stage-specific growth arrest of the intraerythrocytic Plasmodium falciparum via modifications of human serum components. J. Biol. Chem. 275, 39973–39980.CrossRefPubMedGoogle Scholar
  12. Dessen, A., 2000. Phospholipase A2 enzymes: structural diversity in lipid messenger metabolism. Structure, 8, 15–22.CrossRefGoogle Scholar
  13. Doley, R., Kini, R.M., 2009. Protein complexes in snake venom. Cell. Mol. Life Sci. 66, 2851–2871.CrossRefPubMedGoogle Scholar
  14. Faure, G., Harvey, A.L., Thomson, E., Saliou, B., Radvanyi, F., Bon, C. 1993. Comparison of crotoxin isoforms reveals that stability of the complex plays a major role in its pharmacological action. Eur. J. Biochem. 214, 491–496.CrossRefPubMedGoogle Scholar
  15. Faure, G., Choumet, V., Bouchier, C., Camoin, L., Guillaume, J.L., Monegier, B., Vuilhorgne, M., Bon, C. 1994. The origin of the diversity of crotoxin isoforms in the venom of Crotalus durissus terrificus. Eur. J. Biochem. 223, 161–164.CrossRefPubMedGoogle Scholar
  16. Faure, G., 2000. Natural inhibitors of toxic phospholipases A2. Biochimie 82, 833–840.CrossRefPubMedGoogle Scholar
  17. Faure, G., Villela, C., Perales, J., Bon, C. 2000. Interaction of the neurotoxic and non-toxic secretory phospholipases A2 with the crotoxin inhibitor from Crotalus serum. Eur. J. Biochem. 267, 4799–4808.CrossRefPubMedGoogle Scholar
  18. Faure, G., 2002. Different protein targets for snake venom phospholipases A2, in: Goudey-Perrière, F., Bon, C., Puiseux-Dao, S., Sauviat, M. (Eds.), Toxines et Recherches Biomédicales. SFET collection, “Rencontres en toxinologie”, Elsevier, Paris, France, pp. 305–313.Google Scholar
  19. Faure, G., Copic, A., Le Porrier, S., Gubensek, F., Bon, C., Krizaj, I., 2003. Crotoxin acceptor protein isolated from Torpedo electric organ: binding properties to crotoxin by surface plasmon resonance. Toxicon 41, 509–517.CrossRefPubMedGoogle Scholar
  20. Faure, G., Fourier, A. 2006. SPR study to characterize the snake venom phospholipases A2 mechanism of action, in: Goudey-Perrière, F., Benoit, E., Goyffon, M., Marchot, P. (Eds.), SFET collection: Toxines et Cancer. Libraire Lavoisier, Cachan, France, pp. 313–318. ISBN 2-7430-0958-6.Google Scholar
  21. Faure, G., Gowda, V.T., Maroun, R., 2007. Characterization of a human coagulation factor Xa-binding site on phospholipases A2 from Viperidae snake venom by affinity binding studies and molecular bioinformatics. BMC Struc. Biol. 7, 82.CrossRefGoogle Scholar
  22. Faure, G., Goyffon, M., 2008. Inhibiteurs naturels de Phospholipases A2 (PLI) ophidiennes, in: Mion, G., Larréché, S., Goyffon, M. (Eds.), Aspects Cliniques et Thérapeutiques des Envenimations Graves. “Edition spéciale XIV Actualités du Pharo” Edition Xavier Montauban (CD).Google Scholar
  23. Faure, G., Saul, F. 2008. Caractéristiques structurales et fonctionnelles de deux β-neurotoxines: l’ammodytoxine et la crotoxine, in: Benoit, E., Goudey-Perrière, F., Marchot, P., Servent, D. (Eds.), Toxines et Fonctions Cholinergiques Neuronales et Non Neuronales. SFET collection: Rencontres en Toxinologie, E-book RT16, pp. 155–160. ISSN 1760-6004.Google Scholar
  24. Fenard, D., Lambeau, G., Valentin, E., Lefebvre, J.C., Lazdunski, M., Doglio, A., 1999. Secreted phospholipases A2, a new class of HIV inhibitors that block virus entry into host cells. J. Clin. Invest. 104, 611–618.CrossRefPubMedGoogle Scholar
  25. Fenard, D., Lambeau, G., Maurin, G., Lefebvre, JC., Doglio, A., 2001. A peptide derived from bee venom-secreted phospholipase A2 inhibits replication of T-cell tropic HIV-1 strains via interaction with the CXCR4 chemokine receptor. Mol. Pharmacol. 60, 341–347.PubMedGoogle Scholar
  26. Gutierrez, J.M., Lomonte, B., 1995. Phospholipase A2 myotoxins from Bothrops snake venoms. Toxicon 33, 1405–1424.CrossRefPubMedGoogle Scholar
  27. Inada, M., Crowl, R.M., Bekkers, A.C., Verheij, H., Weiss, J. 1994. Determinants of the inhibitory action of purified 14-kDa phospholipases A2 on cell-free prothrombinase complex. J. Biol. Chem. 269, 26338–26343.PubMedGoogle Scholar
  28. Kerns, R.T., Kini, R.M., Stefansson, S., Evans, H.J., 1999. Targeting of venom phospholipases: the strongly anticoagulant phospholipase A2 from Naja nigricollis venom binds to coagulation factor Xa to inhibit the prothrombinase complex. Arch. Biochem. Biophys. 369, 107–113.CrossRefPubMedGoogle Scholar
  29. Kim, J.O., Chakrabarti, B.K., Guha-Niyogi, A., Louder, M.K., Mascola, J.R., 2007. Lysis of human immunodeficiency virus type 1 by a specific secreted human phospholipase A2. J. Virol. 81, 1444–1450.CrossRefPubMedGoogle Scholar
  30. Kini, R.M., Evans, H.J., 1987. Structure-function relationships of phospholipases: the anticoagulant region of phospholipases A2. J. Biol. Chem. 262, 14402–14407.PubMedGoogle Scholar
  31. Kini, R.M., Evans, H.J., 1989. A model to explain the pharmacological effects of snake venom phospholipases A2. Toxicon 27, 613–635.CrossRefPubMedGoogle Scholar
  32. Kini, R.M., Evans, H.J., 1995. The role of enzymatic activity in inhibition of the extrinsic tnenase complex by phospholipase A2 isoenzymes from Naja nigricollis venom. Toxicon 33, 1585–1590.CrossRefPubMedGoogle Scholar
  33. Kini, R.M., 1997. Phospholipase A2 – a complex multifunctional protein puzzle, in: Kini, R.M. (Ed.), Venom Phospholipases A2 Enzymes: Structure, Function and Mechanism. John Wiley, Chichester, pp. 1–28.Google Scholar
  34. Kini, R.M., 2003. Excitement ahead: structure, function and mechanism of snake venom phospholipase A2 enzymes. Toxicon 42, 827–840.CrossRefPubMedGoogle Scholar
  35. Kini, R.M., 2005. Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon 45, 1147–1161.CrossRefPubMedGoogle Scholar
  36. Krizaj, I., Faure, G., Gubensek, F., Bon, C., 1997 Neurotoxic phospholipases A2 ammodytoxin and crotoxin bind to distinct high-affinity protein acceptors in Torpedo marmorata electric organ. Biochemistry 36, 2779–2787.CrossRefPubMedGoogle Scholar
  37. Lambeau, G., Schmid-Alliana, A., Lazdunski, M., Barhanin, J., 1989. Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. J. Biol. Chem. 265, 9526–9532.Google Scholar
  38. Lambeau, G., Schmid-Alliana, A., Lazdunski, M., Barhanin, J., 1990. Identification and purification of a very high affinity binding protein for toxic phospholipases A2 in skeletal muscle. J. Biol. Chem. 265, 9526–9532.PubMedGoogle Scholar
  39. Lambeau, G., Lazdunski, M., 1999. Receptors for a growing family of secreted phospholipases A2, Trends Pharmacol. Sci. 20, 162–170.CrossRefPubMedGoogle Scholar
  40. Lambeau, G., Gelb, M.H., 2008. Biochemistry and physiology of mammalian secreted phospholipases A2. Annu. Rev. Biochem. 77, 495–520.CrossRefPubMedGoogle Scholar
  41. Leadley, R.J., Jr., Chi, L., Porcari, A.R., 2001. Non-hemostatic activity of coagulation factor Xa: potential implications for various diseases. Curr. Opin. Pharmacol. 1, 169–175.CrossRefPubMedGoogle Scholar
  42. Marchi-Salvador, D.P., Corrêa, L.C., Magro, A.J., Oliveira, C.Z., Soares, A.M., Fontes, M.R., 2008. Insights into the role of oligomeric state on the biological activities of crotoxin: crystal structure of a tetrameric phospholipase A2 formed by two isoforms of crotoxin B from Crotalus durissus terrificus venom. Proteins 72, 883–891.CrossRefPubMedGoogle Scholar
  43. Mertens, K., Bertina, R.M., 1980. Pathways in the activation of human coagulation factor X. Biochem. J. 185, 647–658.PubMedGoogle Scholar
  44. Mounier, C.M., Hackeng, T.M., Schaeffer, F., Faure, G., Bon, C., Griffin, J.H., 1998. Inhibition of prothrombinase by human secretory phospholipase A2 involves binding to Factor Xa. J. Biol. Chem. 273, 23764–23772.CrossRefPubMedGoogle Scholar
  45. Mounier, C.M., Luchetta, P., Lecut, C., Koduri, R.S., Faure, G., Lambeau, G., Valentin, E., Singer, A., Ghomashchi, F., Béguin, S., Gelb, M.H., Bon, C., 2000. Basic residues of human group IIA phospholipase A2 are important for binding to factor Xa and prothrombinase inhibition. Comparison with other mammalian secreted phospholipases A2. Eur. J. Biochem. 267, 4960–4969.CrossRefPubMedGoogle Scholar
  46. Murakami, M., Nakatani, Y., Atsumi, G., Inoue, K., Kudo, I., 1997. Regulatory functions of phospholipases A2. Crit. Rev. Immunol. 17, 225–283.CrossRefPubMedGoogle Scholar
  47. Murakami, M., Kambe, T., Shimbara, S., Yamamoto, S., Kuwata, H., Kudo, I., 1999. Functional associationof type IIA secretory phospholipase A2 with the glycosyl phosphatidylinositol-anchoredheparan sulfate proteoglycan in the cyclooxygenase-2-mediated delayedprostanoid biosynthetic pathway. J. Biol. Chem. 20. 162–170.Google Scholar
  48. Murakami, M., Kudo, I., 2001. Diversity and regulatory functions of mammalian secretory phospholipase A2. Adv. Immunol. 77. 163–194.CrossRefPubMedGoogle Scholar
  49. Murakami, M., Kudo, I., 2003. Another way for sPLA2 to meet with cells. Blood 102, 2714–2715.CrossRefGoogle Scholar
  50. Monteiro, R.Q., 2005. Targeting exosites on blood coagulation proteases. Ann. Braz. Acad. Sci. 77, 275–280.Google Scholar
  51. Nevalainen, T.J., Haapamaki, M.M., Gronroos, J.M., 2000. Roles of secretory phospholipases A2 in inflammatory diseases and trauma. Biochem. Biophys. Acta 1488, 83–90.CrossRefPubMedGoogle Scholar
  52. Nevalainen, T.J., Graham, G.G. Scott, K.F., 2008. Antibacterial actions of secreted phospholipases A2. Biochem. Biophys. Acta 1781, 1–9.CrossRefPubMedGoogle Scholar
  53. Ownby, C.L., 1998. Structure, function and biophysical aspects of the myotoxins from snake venoms. J.Toxicol.-Toxins Rev. 17, 213–238.Google Scholar
  54. Perales, J., Villela, C., Domont, G., Choumet, V., Saliou, B., Moussatché, H., Bon, C., Faure, G.. 1995. Molecular structure and mechanism of action of the crotoxin inhibitor from Crotalus durissus terrificus serum. Eur. J. Biochem. 227, 19–26.CrossRefPubMedGoogle Scholar
  55. Prijatelj, P., Charnay, M., Ivanovski, G., Jenko, Z., Pungercar, J., Krizaj, I., Faure, G., 2006. The C-terminal and ß-wing regions of ammodytoxin A, a neurotoxic phospholipase A2 from Vipera ammodytes ammodytes, are critical for binding to factor Xa and for anticoagulant effect. Biochimie 88, 69–76.CrossRefPubMedGoogle Scholar
  56. Prigent-Dachary, J., Boffa, M.C., Boisseau, M.R., Dufourcq, J., 1980. Snake venom phospholipases A2. A fluorescence study of their binding to phospholipid vesicles correlation with their anticoagulant activities. J. Biol. Chem. 255, 7734–7739.PubMedGoogle Scholar
  57. Pungercar, J., Krizaj, I., 2007. Understanding the molecular mechanism underlying the presynaptic toxicity of secreted phospholipases A2. Toxicon 50, 871–892.CrossRefPubMedGoogle Scholar
  58. Renetseder, R., Brunie, S., Dijkstra, B.W., Drenth, J., Sigler, P.B., 1985. A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotalus atrox venom. J. Biol. Chem. 260, 11627–11634.PubMedGoogle Scholar
  59. Rezaie, A.R., He, X., 2000. Sodium binding site of factor Xa: role of sodium in the prothrombinase complex. Biochemistry 39, 1817–1825.CrossRefPubMedGoogle Scholar
  60. Saul, F. A., Prijatelj-Znidarsic, P., Vuillez-le Normand, B., Villette, B., Raynal, B., Pungarcar, J., Krizaj, I., Faure, G., 2010. Comparative structural studies of two natural isoforms of ammodytoxin, phospholipases A2 from Vipera ammodytes ammodytes which differ in neurotoxicity and anticoagulant activity. J. Struct. Biol. 169, 360–369.Google Scholar
  61. Schaloske, R.H., Dennis, E.A., 2006. The phospholipase A2 superfamily and its group numbering system. Biochem. Biophys. Acta 1761, 1246–1259.CrossRefPubMedGoogle Scholar
  62. Scott, D.L., White, S.P., Otwinowski, Z., Yuan, W., Gelb, M.H., Sigler, P.B., 1990a. Interfacial catalysis: the mechanism of phospholipase A2. Science 250, 1541–1546.CrossRefPubMedGoogle Scholar
  63. Scott, V.E.S., Parcej, D.N., Keen, J.N., Findlay, J.B.C., Dolly, J.O., 1990b. α–Dendrotoxin acceptor from bovine brain is a K+ channel protein. J. Biol. Chem. 265, 20094–20097.PubMedGoogle Scholar
  64. Singh, G., Gourinath, S., Sharma, S., Paramasivam, M., Srinivasan, A., Singh, T.P., 2001. Sequence and crystal structure determination of a basic phospholipase A2 from common krait (Bungarus caeruleus) at 2.4 A resolution: identification and characterization of its pharmacological sites. J. Mol. Biol. 307, 1049–1059.CrossRefPubMedGoogle Scholar
  65. Snitko, Y., Koduri, R.S., Han, S.K., Othman, R., Baker, S.F., Molini, B.J., Wilton, D.C., Gelb, M.H., Cho, W., 1997. Mapping the interfacial binding surface of human secertory group IIa phospholipase A2. Biochemistry 36, 14325–14333.CrossRefPubMedGoogle Scholar
  66. Snitko, Y., Han, S.K., Lee, B.I., Cho, W., 1999. Differencial interfacial and substrate binding modes of mammalian pancreatic phospholipases A2: a comparison among human, bovine, and porcine enzymes. Biochemistry 38, 7803–7810.CrossRefPubMedGoogle Scholar
  67. Stefansson, S., Kini, R.M., Evans, H.J., 1989. The inhibition of clotting complexes of the extrinsic coagulation cascade by the phospholipase A2 isoenzymes from Naja nigricollis venom. Thromb. Res. 55, 481–491.CrossRefPubMedGoogle Scholar
  68. Stefansson, S., Kini, R.M., Evans, H.J. 1990. The basic phospholipase A2 from Naja nigricollis venom inhibits the prothrombinase complex by a novel nonenzymatic mechanism. Biochemistry 29, 7742–7746.CrossRefPubMedGoogle Scholar
  69. Valentin, E., Lambeau, G., 2000. What can venom phospholipases A2 tell us about the functional diversity of mammalian secreted phospholipases A2? Biochimie 82, 815–831.CrossRefPubMedGoogle Scholar
  70. van Deenen, L.L.M., de Hass, G.H., 1963. The substrate specificity of phospholipase A2. Biochem. Biophys. Acta 70, 538–553.CrossRefGoogle Scholar
  71. Verheij, H.M., Boffa, M.C., Rothen, C., Bryckaert, M.C., Verger, R., de Haas, G.H., 1980. Correlation of enzymatic activity and anticoagulant properties of phospholipase A2. Eur. J. Biochem. 112, 25–32.CrossRefPubMedGoogle Scholar
  72. Webb, N.R., 2005. Secretory phospholipase A2 enzymes with a potential role in atherogenesis. Curr. Opin. Lipidol. 16, 341–344.CrossRefPubMedGoogle Scholar
  73. Zhong, X., Jiao, H., Fan, L., Wu, X., Zhou, Y. 2002. Functionally important residues for the anticoagulant activity of a basic phospholipase A2 from the Agkistrodon halys pallas. Protein Pept. Lett, 9, 427–434.CrossRefPubMedGoogle Scholar
  74. Zieler, H., Keister, D.B., Dvorak, J.A., Ribeiro, J.M., 2001. A snake venom phospholipase A2 blocks malaria parasite development in the mosquito midgut by inhibiting ookinete association with the midgut surface. J. Exp. Biol. 204, 4157–4167.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Département de Biologie Structurale et ChimieInstitut Pasteur, Unité d’Immunologie Structurale; CNRS, URA 2185ParisFrance

Personalised recommendations