Advertisement

Blood Coagulation Factor IX/Factor X-Binding Protein

  • Takashi MoritaEmail author
Chapter

Abstract

C-type lectin-like proteins of snake have a variety of biological properties, acting for example as an anticoagulant, procoagulant, and agonist/antagonist of platelet activation. Dimerization or oligomer formation of carbohydrate recognition domain (CRD) in C-type lectin by 3D domain swapping generates novel proteins with new functions such as coagulant-, anticoagulant-, and platelet-modulating activities. The structural and functional studies of the first identified C-type lectin-like proteins, IX/X-bp, have been instrumental in defining how new functionally heterodimeric C-type lectin-like proteins are generated from monomeric CRD (carbohydrate recognition domain) in C-type lectin by 3D domain swapping. The crystal structure of IX/X-bp revealed that the two subunits associated by 3 D-domain swapping, and this dimerization resulted in the creation of a concave surface serving as a binding site of Gla domain, the functionally important domain of blood coagulation factors. The strong activities by snaclecs such as IX/X-bp and X-bp are caused by the binding at the Gla domain of factors IX and X. C-type lectin-like proteins of snake venom such as IX/X-bp and its structurally-related proteins recognize various ligands by the higher frequency of mutation in the open reading frames than in the non-coding regions after duplication of a gene.

Keywords

Snake Venom Carbohydrate Recognition Domain Blood Coagulation Cascade Mannose Binding Protein Hinge Loop 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Atoda, H., Hyuga, M., Morita, T., 1991. The primary structure of coagulation factor IX/factor X-binding protein isolated from the venom of Trimeresurus flavoviridis. Homology with asialoglycoprotein receptors, proteoglycan core protein, tetranectin, and lymphocyte Fcɛ receptor for immunoglobulin E. J. Biol. Chem. 266, 14903–14911.PubMedGoogle Scholar
  2. Atoda, H., Ishikawa, M., Mizuno, H., Morita, T., 1998. Coagulation factor X-binding protein from Deinagkistrodon acutus venom is a Gla domain-binding protein. Biochemistry 37, 17361–17370.PubMedCrossRefGoogle Scholar
  3. Atoda, H., Ishikawa, M., Yoshihara, E., Sekiya, F., Morita, T., 1995. Blood coagulation factor IX-binding protein from the venom of Trimeresurus flavoviridis: purification and characterization. J. Biochem. (Tokyo) 118, 965–973.CrossRefGoogle Scholar
  4. Atoda, H., Kaneko, H., Mizuno, H., Morita, T., 2002. Calcium-binding analysis and molecular modeling reveal echis coagulation factor IX/factor X-binding protein has the Ca-binding properties and Ca ion-independent folding of other C-type lectin-like proteins. FEBS Lett. 531, 229–234.PubMedCrossRefGoogle Scholar
  5. Atoda, H., Morita, T., 1989. A novel blood coagulation factor IX/factor X-binding protein with anticoagulant activity from the venom of Trimeresurus flavoviridis (Habu snake): isolation and characterization. J. Biochem. (Tokyo) 106, 808–813.Google Scholar
  6. Atoda, H., Morita, T., 1993. Arrangement of the disulfide bridges in a blood coagulation factor IX/factor X-binding protein from the venom of Trimeresurus flavoviridis. J. Biochem. (Tokyo) 113, 159–163.Google Scholar
  7. Atoda, H., Yoshida, N., Ishikawa, M., Morita, T., 1994. Binding properties of the coagulation factor IX/factor X-binding protein isolated from the venom of Trimeresurus flavoviridis. Eur. J. Biochem. 224, 703–708.PubMedCrossRefGoogle Scholar
  8. Batuwangala, T., Leduc, M., Gibbins, J.M., Bon, C., Jones, E.Y., 2004. Structure of the snake-venom toxin convulxin. Acta Crystallogr. D Biol. Crystallogr. 60(Pt 1), 46–53.PubMedCrossRefGoogle Scholar
  9. Clemetson, J.M., Polgar, J., Magnenat, E., Wells, T.N., Clemetson, K.J., 1999. The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcalphaR and the natural killer receptors. J. Biol. Chem. 274, 29019–29024.PubMedCrossRefGoogle Scholar
  10. Bennett, M.J., Schluneggar, M.P., Eisenberg, D., 1995, 3 D domain swapping: mechanism for oligomer assembly. Protein Sci. 4, 2455–2468.PubMedCrossRefGoogle Scholar
  11. Clemetson, K.J., Morita, T., Kini, R.M., 2009a, Classification and nomenclature of snake venom C-type lectins and related proteins. Toxicon 54, 83.PubMedCrossRefGoogle Scholar
  12. Clemetson, K.J., Morita, T, Kini, M.R., 2009b. Registry of exogenous hemostatic factors of SSC of the ISTH. Scientific and standardization committee communications: classification and nomenclature of snake venom C-type lectins and related proteins. J. Thromb. Haemost. 7, 360.PubMedCrossRefGoogle Scholar
  13. Fujimura, Y., Kawasaki, T., Titani, K., 1996. Snake venom proteins modulating the interaction between von Willebrand factor and platelet glycoprotein Ib. Thromb. Haemost. 76, 633–639.PubMedGoogle Scholar
  14. Fukuda, K., Mizuno, H., Atoda, H., Morita, T., 2000. Crystal structure of flavocetin-A, a platelet glycoprotein Ib-binding protein, reveals a novel cyclic tetramer of C-type lectin-like heterodimers. Biochemistry 39, 1915–1923.PubMedCrossRefGoogle Scholar
  15. Hirotsu, S., Mizuno, H., Fukuda, K., Ma, C.Q., Matsui, T., Hamako, J., Morita, T., Titani, K., 2001. Crystal structure of bitiscetin, a von Willebrand factor-dependent platelet aggregation inducer. Biochemistry 40, 13592–13597.PubMedCrossRefGoogle Scholar
  16. Horii, K., Okuda, D., Morita, T., Mizuno, H., 2003. Structural characterization of EMS16, an antagonist of collagen receptor (GPIa/IIa) from the venom of Echis multisquamatus. Biochemistry 42, 12497–12502.PubMedCrossRefGoogle Scholar
  17. Iwahashi, H., Kimura, M., Nakajima, K., Yamada, D., Morita, T., 2001. Determination of plasma prothrombin level by Ca2+-dependent prothrombin activator (CA-1) during warfarin anticoagulation. J. Heart Valve Dis. 10, 388–392.PubMedGoogle Scholar
  18. Jasti, J., Paramasivam, M., Srinivasan, A., Singh, T.P., 2004. Crystal structure of echicetin from Echis carinatus (Indian saw-scaled viper) at 2.4A resolution. J. Mol. Biol. 335, 167–176.PubMedCrossRefGoogle Scholar
  19. Lee, W.H., Zhuang, Q.Y., Zhang, Y., 2003. Cloning and characterization of a blood coagulation factor IX-binding protein from the venom of Trimeresurus stejnegeri. Toxicon 41, 765–772.PubMedCrossRefGoogle Scholar
  20. Liu, Y., Eisenberg, D., 2002. 3D domain swapping: as domains continue to swap. Protein Sci. 11, 1285–1299.PubMedCrossRefGoogle Scholar
  21. Matsuzaki, R., Yoshihara, E., Yamada, M., Shima, K., Atoda, H., Morita, T., 1996. cDNA cloning of IX/X-BP, a heterogeneous two-chain anticoagulant protein from snake venom. Biochem. Biophys. Res. Commun. 220, 382–387.PubMedCrossRefGoogle Scholar
  22. Mizuno, H., Fujimoto, Z., Atoda, H., Morita, T., 2001. Crystal structure of an anticoagulant protein in complex with the Gla domain of factor X. Proc. Natl. Acad. Sci. U.S.A. 98, 7230–7234.PubMedCrossRefGoogle Scholar
  23. Mizuno, H., Fujimoto, Z., Koizumi, M., Kano, H., Atoda, H., Morita, T., 1997. Structure of coagulation factors IX/X-binding protein, a heterodimer of C-type lectin domains. Nat. Struct. Biol. 4, 438–441.PubMedCrossRefGoogle Scholar
  24. Mizuno, H., Fujimoto, Z., Koizumi, M., Kano, H., Atoda, H., Morita, T., 1999. Crystal structure of coagulation factor IX-binding protein from habu snake venom at 2.6 A: implication of central loop swapping based on deletion in the linker region. J. Mol. Biol. 289, 103–112.PubMedCrossRefGoogle Scholar
  25. Morita, T., 1998. Proteases which activate factor X, in: Bailey, G.S. (Ed.), Snake Venom Enzymes. Alaken, Inc., Colorado, pp. 179–208.Google Scholar
  26. Morita, T., 2004a. C-type lectin-related proteins from snake venoms. Curr. Drug Targets-Cardiovasc. Haematol Disorders 4, 357–373.CrossRefGoogle Scholar
  27. Morita, T., 2004b. Use of snake venom inhibitors in studies of the function and tertiary structure of coagulation factors. Int. J. Hematol. 79, 123–129.PubMedCrossRefGoogle Scholar
  28. Nakashima, K., Ogawa, T., Oda, N., Hattori, M., Sakaki, Y., Kihara, H., Ohno, M., 1993. Accelerated evolution of Trimeresurus flavoviridis venom gland phospholipase A2 isozymes. Proc. Natl. Acad. Sci. U.S.A. 90, 5964–5968.PubMedCrossRefGoogle Scholar
  29. Ogawa, T., Oda, N., Nakashima, K., Sasaki, H., Hattori, M., Sakaki, Y., Kihara, H., Ohno, M., 1992. Unusually high conservation of untranslated sequences in cDNAs for Trimeresurus flavoviridis phospholipase A2 isozymes. Proc. Natl. Acad. Sci. U.S.A. 89, 8557–8561.PubMedCrossRefGoogle Scholar
  30. Ohno, M., Chijiwa, T., Oda-Ueda, N., Ogawa, T., Hattori, S., 2003. Molecular evolution of myotoxic phospholipases A2 from snake venom. Toxicon 42, 841–854.PubMedCrossRefGoogle Scholar
  31. Peng, M., Lu, W., Beviglia, L., Niewiarowski, S., Kirby, E.P., 1993. Echicetin: a snake venom protein that inhibits binding of von Willebrand factor and alboaggregins to platelet glycoprotein Ib. Blood 81, 2321–2328.PubMedGoogle Scholar
  32. Peng, M., Lu, W., Kirby, E.P., 1991. Alboaggregin-B: a new platelet agonist that binds to platelet membrane glycoprotein Ib. Biochemistry 30, 11529–11536.PubMedCrossRefGoogle Scholar
  33. Sekiya, F., Atoda, H., Morita, T., 1993. Isolation and characterization of an anticoagulant protein homologous to botrocetin from the venom of Bothrops jararaca. Biochemistry 32, 6892–6897.PubMedCrossRefGoogle Scholar
  34. Sekiya, F., Yamashita, T., Atoda, H., Komiyama, Y., Morita, T., 1995. Regulation of the tertiary structure and function of coagulation factor IX by magnesium (II) ions. J. Biol. Chem. 270, 14325–14331.PubMedCrossRefGoogle Scholar
  35. Sekiya, F., Yoshida, M., Yamashita, T., Morita, T., 1996a. Localization of the specific binding site for magnesium (II) ions in factor IX. FEBS Lett. 392, 205–208.PubMedCrossRefGoogle Scholar
  36. Sekiya, F., Yoshida, M., Yamashita, T., Morita, T., 1996b. Magnesium (II) is a crucial constituent of the blood coagulation cascade. Potentiation of coagulant activities of factor IX by Mg2+ ions. J. Biol. Chem. 271, 8541–8544.PubMedCrossRefGoogle Scholar
  37. Shikamoto, Y., Morita, T., Fujimoto, Z., Mizuno, H., 2003. Crystal structure of Mg2+- and Ca2+-bound Gla domain of factor IX complexed with binding protein. J. Biol. Chem. 278, 24090–24094.PubMedCrossRefGoogle Scholar
  38. Shin, Y., Okuyama, I., Hasegawa, J., Morita, T., 2000. Molecular cloning of glycoprotein Ib-binding protein, flavocetin-A, which inhibits platelet aggregation. Thromb. Res. 99(3), 239–247.PubMedCrossRefGoogle Scholar
  39. Takeda, S., Igarashi, T., Mori, H., 2007. Crystal structure of RVV-X: an example of evolutionary gain of specificity by ADAM proteinases. FEBS Lett. 581, 5859–5864PubMedCrossRefGoogle Scholar
  40. Takeya, H., Nishida, S., Miyata, T., Kawada, S., Saisaka, Y., Morita, T., Iwanaga, S., 1992. Coagulation factor X activating enzyme from Russell’s viper venom (RVV-X). A novel metalloproteinase with disintegrin (platelet aggregation inhibitor)-like and C-type lectin-like domains. J. Biol. Chem. 267, 14109–14117.PubMedGoogle Scholar
  41. Tani, A., Ogawa, T., Nose, T., Nikandrov, N.N., Deshimaru, M., Chijiwa, T., Chang, C.C., Fukumaki, Y., Ohno, M., 2002. Characterization, primary structure and molecular evolution of anticoagulant protein from Agkistrodon actus venom. Toxicon 40, 803–813.PubMedCrossRefGoogle Scholar
  42. Taniuchi, Y., Kawasaki, T., Fujimura, Y., Suzuki, M., Titani, K., Sakai, Y., Kaku, S., Hisamichi, N., Satoh, N., Takenaka, T., et al., 1995. Flavocetin-A and -B, two high molecular mass glycoprotein Ib binding proteins with high affinity purified from Trimeresurus flavoviridis venom, inhibit platelet aggregation at high shear stress. Biochim. Biophys. Acta 1244, 331–338.PubMedCrossRefGoogle Scholar
  43. Whisstock, J.C., Bottomley, S.P., 2008. Serpins’ mystery solved. Nature 455, 1189–1190.PubMedCrossRefGoogle Scholar
  44. Yamada, D., Morita, T., 1999. CA-1 method, a novel assay for quantification of normal prothrombin using a Ca2+ -dependent prothrombin activator, carinactivase-1. Thromb. Res. 94, 221–226.PubMedCrossRefGoogle Scholar
  45. Yamada, D., Sekiya, F., Morita, T., 1996. Isolation and characterization of carinactivase, a novel prothrombin activator in Echis carinatus venom with a unique catalytic mechanism. J. Biol. Chem. 271, 5200–5207.PubMedCrossRefGoogle Scholar
  46. Yamasaki, M., Li, W., Johnson, D.J.D., Huntington, J.A., 2008. Crystal structure of a stable dimer reveals the molecular basis of serpin polymerization. Nature 455, 1255–1259PubMedCrossRefGoogle Scholar
  47. Yoshida, E., Fujimura, Y., Miura, S., Sugimoto, M., Fukui, H., Narita, N., Usami, Y., Suzuki, M., Titani, K., 1993. Alboaggregin-B and botrocetin, two snake venom proteins with highly homologous amino acid sequences but totally distinct functions on von Willebrand factor binding to platelets. Biochem. Biophys. Res. Commun. 191, 1386–1392.PubMedCrossRefGoogle Scholar
  48. Zingali, R.B., Jandrot-Perrus, M., Guillin, M.C., Bon, C., 1993. Bothrojaracin, a new thrombin inhibitor isolated from Bothrops jararaca venom: characterization and mechanism of thrombin inhibition. Biochemistry 32, 10794–10802.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of BiochemistryMeiji Pharmaceutical UniversityTokyoJapan
  2. 2.Department of Host Defense and Biological ResearchJuntendo University School of MedicineTokyoJapan

Personalised recommendations