New Trends in the Diagnosis and Molecular Epidemiology of Viral Diseases

  • Ericka A. PestanaEmail author
  • Sandor Belak
  • Adama Diallo
  • John R. Crowther
  • Gerrit J. Viljoen


Despite intensive worldwide control programmes against infectious diseases, including vaccination programmes with the use of DIVA vaccines; mass culling (stamping out policies) and regulation of animal movements; various virus diseases still have a very high negative impact on animal health and welfare. The intensification of animal husbandry; centralisation of large groups of animals in industrial production units; globalization of trade in live animals and/or animal products, bedding and feeds; as well as increased tourism, are all considerable factors in the threat of devastating infectious diseases word-wide. The opening of borders between many countries such as in the European continent contributes greatly to the high-risk situation, where infectious agents may easily travel thousands of miles and then suddenly appear in areas where they are unexpected and probably even unknown. The sudden and unexpected appearance of any infectious disease in a new region, be it a country or a continent, may lead to a delayed or innaccurate diagnosis resulting in the uncontrolled spread of the disease agent to other susceptible populations of animals over large geographic areas. Recent major examples are incidences of foot-and-mouth disease (FMD) in the UK, the extension of rinderpest into the Somali plains and Rift Valley fever (RVF) spread into the Arabian Peninsula. The latest major problem is the occurrence, re-occurrence and rapid spread of influenza virus. All these exemplify the serious economic and social impact of the of highly contagious transboundary animal diseases (TADs ).


Bovine Viral Diarrhoea Virus Molecular Epidemiology Classical Swine Fever Virus Rift Valley Fever African Swine Fever 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ackermann, M, Engels, M. 2006. Pro and contra IBR-eradication. Vet. Microbiol., 113, 293–302. Review.CrossRefPubMedGoogle Scholar
  2. 2.
    Agüero, M, Fernández, J, Romero, LJ, Zamora, J, Sánchez, C, Belák, S, Arias, M, Sánchez–Vizcaíno, JM. 2004. A highly sensitive and specific gel-based multiplex PCR assay for the simultaneous and differential diagnosis of African swine fever and classical swine fever in clinical samples. Vet. Res., 35, 551–563.CrossRefPubMedGoogle Scholar
  3. 3.
    Allander, T, Tammi, MT, Eriksson, M, Bjerkner, A, Tiveljung-Lindell, A, Andersson, B. 2005. Cloning of a human parvovirus by molecular screening of respiratory tract samples. Proc. Natl. Acad. Sci. USA., 102, 12891–6. Erratum in Proc. Natl. Acad. Sci.,USA, 102, 15712.CrossRefPubMedGoogle Scholar
  4. 4.
    Bálint, A, Baule, C, Pálfi, V, Belák, S. 2005. Retrospective genome analysis of a live vaccine strain of bovine viral diarrhoea virus. Vet. Res., 36, 89–99.CrossRefPubMedGoogle Scholar
  5. 5.
    Banér, J, Gyarmati, P, Yacoub, A, Hakhverdyan, M, Stenberg, J, Ericson, O, Nilsson, M Landegren, U, Belák, S. 2007. Microarray-based molecular detection of Foot-and-mouth disease, Vesicular stomatitis and Swine vesicular disease viruses, using padlock probes. J. Virol. Methods, 143, 200–06.CrossRefPubMedGoogle Scholar
  6. 6.
    Belák, S. 2005. The molecular diagnosis of porcine viral diseases, a review. Acta. Vet. Hung., 53, 113–24.CrossRefPubMedGoogle Scholar
  7. 7.
    Belák, S. 2007a. Experiences of an OIE Collaborating Centre in molecular diagnosis of transboundary animal diseases, a review. Dev. Biol. (Basel), 128, 103–12.Google Scholar
  8. 8.
    Belák, S. 2007b. Molecular diagnosis of viral diseases, present trends and future aspects a view from the OIE Collaborating Centre for the Application of Polymerase Chain Reaction Methods for Diagnosis of Viral Diseases in Veterinary Medicine. Vaccine, 25, 5444–52.CrossRefPubMedGoogle Scholar
  9. 9.
    Belák, S, Hakhverdyan, M. 2006. Recent achievements and trends in the molecular diagnosis of bovine viral diseases – a view from the “OIE Collaborating Centre for the Application of Polymerase Chain Reaction Methods for the Diagnosis of Viral Diseases in Veterinary Medicine”. Dtsch. Tierärztl Wochenschr, 113, 129–33.PubMedGoogle Scholar
  10. 10.
    Belák, S, Thorén, P. 2001. Molecular diagnosis of animal diseases, some experiences over the past decade. Expert Rev. Mol. Diagn., 1, 434–43.CrossRefPubMedGoogle Scholar
  11. 11.
    Belák, S. 2004. Validation and quality control of polymerase chain methods used for the diagnosis of infectious diseases. Office International des Epizooties (OIE), Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (mammals, birds and bees). Fifth Edition, Chapter I.1.4., 30–36.Google Scholar
  12. 12.
    Blomström, AL, Hakhverdyan, M, Reid, SM, Dukes, JP, King, DP, Belák, S, Berg, M. 2008. A one-step reverse transcriptase loop-mediated isothermal amplification assay for simple and rapid detection of swine vesicular disease virus. J. Virol. Methods, 147, 188–93.CrossRefPubMedGoogle Scholar
  13. 13.
    Chan, CH., Lin KL., Chan, Y, Wang, YL, Chi, YT, Tu, HL, Shieh, HK, Liu, WT. 2006. Amplification of the entire genome of influenza A virus H1N1 and H3N2 subtypes by reverse-transcription polymerase chain reaction. J. Virol. Methods, 136, 38–43.CrossRefPubMedGoogle Scholar
  14. 14.
    Crowther, JR, Unger, H, Viljoen, GJ. 2006. Aspects of kit validation for tests used for the diagnosis and surveillance of livestock diseases, producer and end-user responsibilities. Rev. Sci. Tech., 25, 913–35. Review.PubMedGoogle Scholar
  15. 15.
    Delwart, EL. 2007. Viral metagenomics. Rev. Med. Virol., 17, 115–31.CrossRefPubMedGoogle Scholar
  16. 16.
    Farkas, T, Antal M, Sámi L, Germán P, Kecskeméti S, Kardos G, Belák S, Kiss, I. 2007. Rapid and simultaneous detection of avian influenza and Newcastle disease viruses by duplex polymerase chain reaction assay. Zoonoses Public Health, 54, 38–43.CrossRefPubMedGoogle Scholar
  17. 17.
    Fernández, J, Agüero, M, Romero, L, Sánchez, C, Belák, S, Arias, ML, Sánchez-Vizcaíno, JM. 2008. Rapid and differential diagnosis of foot-and-mouth disease (FMD), swine vesicular disease (SVD) and vesicular stomatitis (VS) by a new multiplex RT-PCR assay, analysing clinical samples. J. Virol. Methods, 147, 301–11.CrossRefPubMedGoogle Scholar
  18. 18.
    Gyarmati, P, Mohammed, N, Norder, H, Blomberg, J, Belák, S, Widén, F. 2007. Universal detection of hepatitis E virus by two real-time PCR assays, TaqMan and Primer-Probe Energy Transfer. J. Virol. Methods, 146, 226–35.CrossRefPubMedGoogle Scholar
  19. 19.
    Gyarmati, P, Conze, T, Zohari, S, LeBlanc, N, Nilsson, M, Landegren, U, Banér, J, Belák, S. 2008. Simultaneous genotyping of all hemagglutinin and neuraminidase subtypes of avian influenza viruses using padlock probes. J. Clin. Microbiol., 46, 1747–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Hakhverdyan, M, Rasmussen, TB, Thorén, P, Uttenthal, Å, Belák, S. 2006. Development of a real-time PCR assay based on primer-probe energy transfer for the detection of swine vesicular disease virus. Arch. Virol., 151, 2365–76.CrossRefPubMedGoogle Scholar
  21. 21.
    Hjertner, B, Meehan, B, McKillen, J, McNeilly, F, Belák, S. 2005. Development of invader squared assay for the detection of African swine fever DNA and comparison to PCR based assays. J. Virol. Methods, 124, 1–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Hoffmann, E, Stech, J, Guan, Y, Webster, RG, Perez, DR. 2001. Universal primer set for the full-length amplification of all influenza A viruses. Arch.Virol., 146, 2275–89.CrossRefPubMedGoogle Scholar
  23. 23.
    Kiss, I, Germán, P, Sámi, L, Antal M, Farkas, T, Kardos, G, Kecskeméti, S, Dán, Á, Belák, S. 2006. Application of LUX (light upon extension) flourogenic primer utilizing real-time RT-PCR for the rapid detection of avian influenza viruses. Acta. Vet. Hung., 54, 525–33CrossRefPubMedGoogle Scholar
  24. 24.
    Larsen, LE. 2000. Bovine respiratory syncytial virus (BRSV), a review. Acta. Vet. Scand., 41, 1–24.PubMedGoogle Scholar
  25. 25.
    LeBlanc, N, Gantelius, J, Schwenk, J, Ståhl, K, Blomberg, J, Andersson-Svahn, H, Belák, S. 2008. Development of a magnetic bead microarray for the simultaneous and simple detection of four pestiviruses. J. Virol. Methods, in press.Google Scholar
  26. 26.
    Liu, L, Kampa, J, Belák, S, Baule, C. 2008. Identification of a new species of pestivirus as genotype-3 Bovine Viral Diarrhoea Virus (BVDV-3) based on full-length genome sequence analysis. SubmittedGoogle Scholar
  27. 27.
    McKillen, J, Hjertner, B, Millar, A, McNeilly, F, Belák, S, Adair, B, Allan, G. 2006. Molecular beacon real-time PCR detection of swine viruses. J. Virol. Methods, 140, 155–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Moennig, V, Houe, H, Lindberg, A. 2005. BVD control in Europe, current status and perspectives. Ani. Health Res. Rev., 6, 63–74.CrossRefGoogle Scholar
  29. 29.
    Nordengrahn, A, Gustafsdottir, SM, Ebert, K, Reid, SM, King, DP, Ferris, NP, Brocchi, E, Grazioli, S, Landegren, U, Merza, M. 2008. Evaluation of a novel proximity ligation assay for the sensitive and rapid detection of foot-and-mouth disease virus. Vet Microbiol., 127, 227–36.CrossRefPubMedGoogle Scholar
  30. 30.
    Rasmussen, T, Uttenthal, Å, de Stricker, K, Belák, S, Storgaard, T. 2003. Development of a novel quantitative real-time PCR assay for the simultaneous detection of all serotypes of foot-and-mouth disease virus. Arch. Virol., 148, 2005–21.CrossRefPubMedGoogle Scholar
  31. 31.
    Sámi, L, Ursu, K, McKillen, J, Kecskeméti, S, Belák, S, Kiss, I. 2007. Simultaneous detection of three porcine viruses by multiplex PCR. Acta. Vet. Hung., 55, 267–76.CrossRefPubMedGoogle Scholar
  32. 32.
    Sanchez, JA, Pierce, KE, Rice, JE, Wangh, LJ. 2004. Linear-After-The-Exponential (LATE)-PCR, An advanced method of asymmetric PCR and its uses in quantitative real-time analysis. Proc. Natl. Acad. Sci. USA., 101, 1933–38.CrossRefPubMedGoogle Scholar
  33. 33.
    Segalés, J, Calsamiglia, M, Olvera, A, Sibila, M, Badiella, L, Domingo, M. 2005. Quantification of porcine circovirus type 2 (PCV2) DNA in serum and tonsillar, nasal, tracheo-bronchial, urinary and faecal swabs of pigs with and without postweaning multisystemic wasting syndrome (PMWS). Vet. Microbiol., 111, 223–9.CrossRefPubMedGoogle Scholar
  34. 34.
    Spatz, SJ., Rue, CA. 2008. Sequence determination of a mildly virulent strain (CU-2) of Gallid herpesvirus type 2 using 454 pyrosequencing.Virus Genes. 36, 479–89.CrossRefPubMedGoogle Scholar
  35. 35.
    Stadejek, T, Stankevicius, A, Storgaard, T, Oleksiewicz, MB, Belák, S, Drew, TW, Pejsak, Z. 2002. Identification of radically different variants of porcine reproductive and respiratory syndrome virus in Eastern Europe, towards a common ancestor for European and American viruses. J. Gen. Virol., 83, 1861–73.PubMedGoogle Scholar
  36. 36.
    Ståhl, K, Kampa, J, Alenius, S, Persson Wadman, A, Baule, C, Aiumlamai, S, Belák, S. 2007. Natural infection of cattle with an atypical 'HoBi'-like pestivirus – implications for BVD control and for the safety of biological products. Vet. Res., 38, 517–23.CrossRefPubMedGoogle Scholar
  37. 37.
    Ståhl, K, Kampa, J, Baule, C, Isaksson, M, Moreno-Lopez, J, Belák, S, Alenius, S, Lindberg, A. 2005. Molecular epidemiology of bovine viral diarrhoea during the final phase of the Swedish BVD-eradication programme. Prev. Vet. Med., 72, 103–8; discussion 215–9.CrossRefPubMedGoogle Scholar
  38. 38.
    Vilcek, S, Belák, S. 1998. Classical swine fever virus, discrimination between vaccine strains and European field viruses by restriction endonuclease cleavage of PCR amplicons. Acta. Vet. Scand., 39, 395–400.PubMedGoogle Scholar
  39. 39.
    Xia, H, Liu, L, Wahlberg, N, Baule, C, Belák, S. 2007. Molecular phylogenetic analysis of bovine viral diarrhoea virus, a Bayesian approach. Virus Res., 130, 53–62.CrossRefPubMedGoogle Scholar
  40. 40.
    Yacoub, A., Kiss, I, Zohari, S, Hakhverdyan, M, Czifra, G, Mohamed, N, Gyarmati, P, Blomberg, J, Belák, S. 2009. A simple assay for rapid subtyping and pathotyping of avian influenza viruses. In preparation.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ericka A. Pestana
    • 1
    Email author
  • Sandor Belak
    • 2
  • Adama Diallo
    • 1
  • John R. Crowther
    • 1
  • Gerrit J. Viljoen
    • 1
  1. 1.Department of Nuclear Sciences and ApplicationsInternational Atomic Energy Agency (IAEA)ViennaAustria
  2. 2.Department of VirologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations