Advertisement

Quantum-Mechanical Molecular Dynamics of Charge Transfer

  • Victor M. AnisimovEmail author
  • Claudio N. Cavasotto
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 12)

Abstract

Computational studies of biological macromolecules are challenging due to large size of biomolecules, their conformational flexibility, and the need in explicit water solvation in order to simulate conditions close to experiment. Under these circumstances studying molecular systems via quantum-mechanical calculations becomes exceedingly difficult. Natural is the attempt to reduce the complex quantum-mechanical picture to a more tractable one by accommodating classical-mechanical principles. However, the simplified models may overlook important physics details of atomic interactions. To avoid such potential pitfalls higher level of theory methods should be available to conduct validation studies. Using semiempirical linear scaling quantum-mechanical LocalSCF method we performed molecular dynamics simulation of ubiquitin in explicit water. The simulation revealed various deviations from the classical mechanics picture. The average charge on amino acids varied depending on their environment. We observed charge transfer channels transmitting electric charge between amino acids in sync with protein motion. We also noticed that the excess charge transferred from protein to water creates a charge cloud around the protein. The observed global dynamic effects of charge transfer represent a new previously unaccounted degree of freedom of biomolecules which requires QM treatment in order to obtain more accurate dynamics of biomolecules at atomic resolution.

Keywords

NDDO method PM5 Hamiltonian Ubiquitin Water droplet Spherical boundary potential QM MD Charge transfer VFL approximation LocalSCF Linear scaling 

Abbreviations

AM1

Austin model 1

DFT

Density functional theory

HF/6-31G*

Hartree–Fock method using Pople 6-31G* basis set

LocalSCF

Local self consistent field

MD

Molecular dynamics

NDDO

Neglect of diatomic differential overlap

PM3

Parametric method 3

PM5

Parametric method 5

QM

Quantum mechanics

RM1

Recife model 1

SCF

Self-consistent field

VFL

Variational finite localized molecular orbital approximation

Notes

Acknowledgements

The Authors are grateful to the Texas Advanced Computing Center (TACC) (http://www.tacc.utexas.edu) for providing high-performance computing resources for this project. Support from a R.A. Welch Foundation Chemistry and Biology Collaborative grant from the John S. Dunn Gulf Coast Consortium for Chemical Genomics is greatly acknowledged.

References

  1. 1.
    Goedecker S (1999) Rev Mod Phys 71:1085–1123CrossRefGoogle Scholar
  2. 2.
    Goedecker S, Scuseria GE (2003) Comp Sci Eng 5:14–21CrossRefGoogle Scholar
  3. 3.
    McCammon JA, Gelin BR, Karplus M (1977) Nature 267:585–590CrossRefGoogle Scholar
  4. 4.
    Warshel A, Levitt M (1976) J Mol Biol 103:227–249CrossRefGoogle Scholar
  5. 5.
    Anikin NA, Anisimov VM, Bugaenko VL et al (2004) J Chem Phys 121:1266–1270CrossRefGoogle Scholar
  6. 6.
    Anisimov VM, Bugaenko VL (2009) J Comp Chem 30:784–798CrossRefGoogle Scholar
  7. 7.
    Halgren TA, Damm W (2001) Curr Opin Struct Biol 11:236–242CrossRefGoogle Scholar
  8. 8.
    Sprik M, Klein ML (1988) J Chem Phys 89:7556–7560CrossRefGoogle Scholar
  9. 9.
    Caldwell J, Dang LX, Kollman PA (1990) J Am Chem Soc 112:9144–9147CrossRefGoogle Scholar
  10. 10.
    Rick SW, Stuart SJ, Berne BJ (1994) J Chem Phys 101:6141CrossRefGoogle Scholar
  11. 11.
    Lopes PEM, Roux B, MacKerell AD (2009) Theor Chem Acc 124:11–28CrossRefGoogle Scholar
  12. 12.
    Anisimov VM, Vorobyov IV, Roux B et al (2007) J Chem Theory Comput 3:1927–1946CrossRefGoogle Scholar
  13. 13.
    Nadig G, Van Zant LC, Dixon SL et al (1998) J Am Chem Soc 120:5593–5594CrossRefGoogle Scholar
  14. 14.
    Thompson WH, Hynes JT (2000) J Am Chem Soc 122:6278–6286CrossRefGoogle Scholar
  15. 15.
    Tanaka M, Aida M (2004) J Sol Chem 33:887–901CrossRefGoogle Scholar
  16. 16.
    Ikeda T, Hirata M, Kimura T (2005) J Chem Phys 122:024510CrossRefGoogle Scholar
  17. 17.
    Cappa CD, Smith JD, Wilson KR et al (2005) J Phys Chem B 109:7046–7052CrossRefGoogle Scholar
  18. 18.
    Voityuk AA, Siriwong K, Rösch N (2004) Angew Chem Int Ed 43:624–627CrossRefGoogle Scholar
  19. 19.
    Kubar T, Kleinekathofer U, Elstner M (2009) J Phys Chem B 113:13107–13117CrossRefGoogle Scholar
  20. 20.
    Peraro MD, Raugei S, Carloni P et al (2005) Chemphyschem 6:1715–1718CrossRefGoogle Scholar
  21. 21.
    Anisimov VM, Bugaenko VL, Cavasotto CN (2009) Chemphyschem 10:3194–3196CrossRefGoogle Scholar
  22. 22.
    Balabin IA, Beratan DN, Skourtis SS (2008) Phys Rev Lett 101:158102CrossRefGoogle Scholar
  23. 23.
    Komeiji Y, Ishida T, Fedorov DG et al (2007) J Comp Chem 28:1750–1762CrossRefGoogle Scholar
  24. 24.
    Dewar MJS, Zoebisch EG, Healy EF et al (1985) J Am Chem Soc 107:3902–3909CrossRefGoogle Scholar
  25. 25.
    Rocha GB, Freire RO, Simas AM et al (2006) J Comp Chem 27:1101–1111CrossRefGoogle Scholar
  26. 26.
    Stewart JJP (1989) Method J Comp Chem 10:209–220CrossRefGoogle Scholar
  27. 27.
    Stewart JJP (2002) Mopac 2002. Fujitsu Ltd, Tokyo, JapanGoogle Scholar
  28. 28.
    Hoover WG (1985) Phys Rev A 31:1695–1697CrossRefGoogle Scholar
  29. 29.
    Ferrario M, Fionino A, Ciccotti G (1997) Physica A 240:268–276CrossRefGoogle Scholar
  30. 30.
    van der Vaart A, Merz KM (2002) J Chem Phys 116:7380–7388CrossRefGoogle Scholar
  31. 31.
    Cavalli A, Carloni P, Recanatini M (2006) Chem Rev 106:3497–3519CrossRefGoogle Scholar
  32. 32.
    Geissler PL, Dellago C, Chandler D et al (2001) Science 291:2121–2124CrossRefGoogle Scholar
  33. 33.
    Patel S, Mackerell AD Jr, Brooks CL III (2004) J Comp Chem 25:1504–1514CrossRefGoogle Scholar
  34. 34.
    van Duin ACT, Dasgupta S, Lorant F et al (2001) J Phys Chem A 105:9396–9409CrossRefGoogle Scholar
  35. 35.
    Liu H, Elstner M, Kaxiras E et al (2001) Proteins 44:484–489CrossRefGoogle Scholar
  36. 36.
    Tong L, Warren TC, King J et al (1996) J Mol Biol 256:601–610CrossRefGoogle Scholar
  37. 37.
    Vorobyov IV, Anisimov VM, MacKerell ADJ (2005) J Phys Chem B 109:18988–18999CrossRefGoogle Scholar
  38. 38.
    Giese TJ, York DM (2004) J Chem Phys 120:9903–9906CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  1. 1.School of Health Information SciencesUniversity of Texas at HoustonHoustonUSA

Personalised recommendations