Beyond Standard Quantum Chemical Semi-Classic Approaches: Towards a Quantum Theory of Enzyme Catalysis

  • Orlando Tapia
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 12)


The role transition structures (TSs) and vectors have played in discussing issues associated to enzyme catalysis is examined with focus on RubisCO; computations belong to standard semi-classic Born-Oppenheimer model with one-electron orbitals located at nuclear position coordinates. Here, theory is brought a step beyond starting from exact quantum schemes to get types of semi-classic Hamiltonians allowing for clear definitions of electronuclear separable models. Electronuclear quantum states (QSs) are given by linear superpositions over eigenfunctions of semi-classic Hamiltonians; base state functions are products of space and spin components. For frozen nuclei models amplitudes depend on nuclear configuration multiplying electronic diabatic base functions characterized by nodal pattern distributions. QS’ time evolution requires couplings to external fields and does not necessarily conserve total spin. RubisCO’s dioxygen and ethene-fragment quantum reactivity are examined and generalized. Conservation of nodal patterns permits links to exact semi-classic schemes ensuring correct presentation of bond forming processes; possible failures of LCAO-based computations without nodal control are discussed. These issues are examined in relation to catalysis representation. Pauling’s idea that TS signals bent out of equilibrium shape of reactant and product is framed in terms of transition QSs. A full quantum catalysis model is introduced.


Abstract quantum mechanics Electromagnetic fields Quantum catalysts H + H system RubisCO Quantum transition states Photorespiration Angular momentum Diabatic states Quantum base states: dioxygen Ethylene Carbene 



I dedicate this work to the memory of Prof. Carl-Ivar Brändén a great scientist who introduced us to the quest of enzyme catalytic sources by assigning the task of studying RubisCO’s mechanism.

The author is most grateful to all coworkers participating in these enterprises: J Andrés, M. Oliva,V S Safont, V Moliner, H. Fidder for beautiful insights on RubisCO catalytic mechanisms; Prof. G A Arteca for working in developments of the diabatic theory and model applications. Figure 10-1 was adapted from Monica Oliva’s thesis work, the present author is most grateful to her.


  1. 1.
    Tapia O, Fidder H, Safont VS, Oliva M, Andres J (2002) Int J Quantum Chem 88:154–166CrossRefGoogle Scholar
  2. 2.
    Arteca GA, Tapia O (2005) J Math Chem 37:389–408CrossRefGoogle Scholar
  3. 3.
    Tapia O, Arteca GA (2004) Adv Quant Chem 47:273–289Google Scholar
  4. 4.
    Tapia O (2006) J Math Chem 39:637–669CrossRefGoogle Scholar
  5. 5.
    Tapia O (2009) Adv Quant Chem 56:31–93CrossRefGoogle Scholar
  6. 6.
    Kolos W, Wolniewicz L (1964) J Chem Phys 41:3663–3673CrossRefGoogle Scholar
  7. 7.
    Tapia O, Cardenas R, Andres J, Colonna-Cesari F (1988) J Am Chem Soc 110:4046–4047CrossRefGoogle Scholar
  8. 8.
    Jacob O, Cardenas R, Tapia O (1990) J Am Chem Soc 112:8692–8705CrossRefGoogle Scholar
  9. 9.
    Andersson I (2008) J Exp Bot 59:1555–1568CrossRefGoogle Scholar
  10. 10.
    Tapia O, Andres J (1992) Mol Eng 2:37–41CrossRefGoogle Scholar
  11. 11.
    Tapia O, Andres J, Safont VS (1996) J Phys Chem 100:8543–8550CrossRefGoogle Scholar
  12. 12.
    Moliner V, Andrés J, Oliva M, Safont VS, Tapia O (1999) Theoret Chem Acc 101:228–233CrossRefGoogle Scholar
  13. 13.
    Oliva M, Safont VS, Andrés J, Tapia O (2001) Chem Phys Lett 340:391–399CrossRefGoogle Scholar
  14. 14.
    Oliva M, Safont VS, Andrés J, Tapia O (2001) J Phys Chem A 105:9243–9251CrossRefGoogle Scholar
  15. 15.
    Born M, Huang K (1954) Dynamical theory of crystal lattices. Clarendon, OxfordGoogle Scholar
  16. 16.
    Arteca GA, Rank JP, Tapia O (2008) Int J Quantum Chem 108:1810–1820CrossRefGoogle Scholar
  17. 17.
    Wood RW (1922) Proc Roy Soc A 102:1–9CrossRefGoogle Scholar
  18. 18.
    Kaplan J (1927) Phys Rev 30:639–643CrossRefGoogle Scholar
  19. 19.
    Tapia O, Arteca GA (2003) Internet Elect J Mol Des 2:354–474Google Scholar
  20. 20.
    Tapia O, Polo V, Andrés J (2006) In: Julien J-P, Maruani J, Mayou D, Wilson S, Delgado-Barrio S (eds) Recent advances in the theory of chemical and physical systems. Springer, The NetherlandsGoogle Scholar
  21. 21.
    Fischer H, Radom L (2001) Angew Chem Int Ed 40:1341–1371CrossRefGoogle Scholar
  22. 22.
    Berson JA (1994) Science 266:1338–1339CrossRefGoogle Scholar
  23. 23.
    Schweitzer C, Schmidt R (2003) Chem Rev 103:1685–1757CrossRefGoogle Scholar
  24. 24.
    Schmidt R, Bodesheim M (1995) J Phys Chem 99:15919–15924CrossRefGoogle Scholar
  25. 25.
    Minaev BF, Ågren H (1997) J Chem Soc Faraday Trans 93:2231–2239CrossRefGoogle Scholar
  26. 26.
    Oliva M, Safont VS, Andrés J, Tapia O (2001) J Phys Chem A 105:4726–4736CrossRefGoogle Scholar
  27. 27.
    Tapia O, Andrés J, Safont VS (1994) J Chem Soc Faraday Trans 90:2365–2374CrossRefGoogle Scholar
  28. 28.
    Tapia O (2009) Quantum physical chemistry. E-book. To be found at e-address: Google Scholar

Copyright information

© Springer Netherlands 2010

Authors and Affiliations

  • Orlando Tapia
    • 1
  1. 1.Department of Physical Chemistry and Analytical ChemistryUppsala UniversityUppsalaSweden

Personalised recommendations