Advertisement

On Some Aspects of Fock-Space Multi-Reference Coupled-Cluster Singles and Doubles Energies and Optical Properties

  • Prashant Uday ManoharEmail author
  • Kodagenahalli R. Shamasundar
  • Arijit Bag
  • Nayana Vaval
  • Sourav Pal
Chapter
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 11)

Abstract

Multi-reference coupled cluster methods are established as accurate and efficient tools for describing electronic structure of quasi degenerate states. Recently we have developed multi-reference coupled cluster linear response approach based on the constrained variation method. The method is very general and can describe challenging problems due to the multiple-root nature of effective Hamiltonian. Calculation of response properties for the ionized/electron attached or excited state molecules is a challenging task. With this formulation it is possible to accurately predict the higher order molecular properties of the open shell molecules. In this article we review the response approaches for quasi degenerate cases with emphasis on Fock space multi-reference coupled cluster method.

Keywords:

Multireference coupled cluster Fock space Optical properties Linear response 

Notes

Acknowledgment

One of us (SP) acknowledges partial financial assistance from J. C. Bose Fellowship grand of DST and Shanti Swarup Bhatnagar (SSB) prize grant of CSIR towards this work. Authors also acknowledge Center of Excellence at N.C.L Pune.

References

  1. 1.
    J. Čí žek, Adv. Quantum Chem.14, 35 (1969); R. J. Bartlett, Annu. Rev. Phys. Chem.32, 359 (1981); J. Paldus, inMethods in Computational Molecular Physics, NATO ASI Series B, Eds. S. Wilson, G. H. F. Diercksen (Plenum, New York, 1992)Google Scholar
  2. 2.
    T. Helgaker, P. Jørgensen, Adv. Quantum Chem.19, 183 (1988)CrossRefGoogle Scholar
  3. 3.
    R. J. Bartlett, inGeometrical Derivatives of Energy Surface and Molecular Properties, Eds. P. Jørgensen, J. Simons (Reidel, Dordrecht, 1986)Google Scholar
  4. 4.
    E. A. Salter, G. Trucks, R. J. Bartlett, J. Chem. Phys.90, 1752 (1989); E. A. Salter, R. J. Bartlett, J. Chem. Phys.90, 1767 (1989)Google Scholar
  5. 5.
    S. Pal, M. D. Prasad, D. Mukherjee, Theor. Chim. Acta62, 523 (1983)CrossRefGoogle Scholar
  6. 6.
    N. Vaval, S. Pal, Phys. Rev. A54, 250 (1996); N. Vaval, A. B. Kumar, S. Pal, Int. J. Mol. Sci.2, 89 (2001); P. U. Manohar, N. Vaval, S. Pal, Chem. Phys. Lett.387, 442 (2004)Google Scholar
  7. 7.
    J. Gauss, J. F. Stanton, J. Chem. Phys.104, 2574 (1996); T. Helgaker, M. Jaszunski, K. Ruud, Chem. Rev.99, 293 (1999)Google Scholar
  8. 8.
    H. J. Monkhorst, Int. J. Quantum Chem.S11, 421 (1977)Google Scholar
  9. 9.
    R. J. Bartlett, J. Noga, Chem. Phys. Lett.150, 29 (1988); R. J. Bartlett, S. A. Kucharski, J. Noga, Chem. Phys. Lett.155, 133 (1989)Google Scholar
  10. 10.
    S. Pal, K. B. Ghosh, Curr. Sci.63, 667 (1992)Google Scholar
  11. 11.
    J. S. Arponen, Ann. Phys.151, 311 (1983); J. S. Arponen, R. F. Bishop, E. Pajanne, Phys. Rev. A36, 2519 (1987)Google Scholar
  12. 12.
    T. V. Voorhis, M. Head-Gordon, Chem. Phys. Lett.330, 585 (2000); M. Head-Gordon, T. V. Voorhis, J. Chem. Phys.113, 8873 (2000)Google Scholar
  13. 13.
    L. Adamowicz, W. D. Ladig, R. J. Bartlett, Int. J. Quantum Chem. Symp.18, 245 (1984)CrossRefGoogle Scholar
  14. 14.
    N. C. Handy, H. F. Scaefer III, J. Chem. Phys.81, 5031 (1984)CrossRefGoogle Scholar
  15. 15.
    P. Jørgensen, T. Helgaker, J. Chem. Phys.89, 1560 (1988)CrossRefGoogle Scholar
  16. 16.
    T. Helgaker, P. Jørgensen, Theor. Chim. Acta75, 111 (1989)CrossRefGoogle Scholar
  17. 17.
    H. Koch, H. J. Aa. Jensen, P. Jørgensen, T. Helgaker, G. E. Scuseria, H. F. Schaefer III, J. Chem. Phys.92, 4924 (1990)CrossRefGoogle Scholar
  18. 18.
    H. Koch, P. Jørgensen, J. Chem. Phys.93, 3333 (1990)CrossRefGoogle Scholar
  19. 19.
    D. Mukherjee, I. Lindgren, Phys. Rep.151, 93 (1987)CrossRefGoogle Scholar
  20. 20.
    D. Mukherjee, S. Pal, Adv. Quantum Chem.20, 291 (1989)CrossRefGoogle Scholar
  21. 21.
    P. Durand, J. P. Malrieu, Adv. Chem. Phys.67, 321 (1987)CrossRefGoogle Scholar
  22. 22.
    V. Hurtubise, K. F. Freed, Adv. Chem. Phys.83, 465 (1993)CrossRefGoogle Scholar
  23. 23.
    P. Durand, J. P. Malrieu, Adv. Chem. Phys.67, 321 (1987); S. Evangelisti, J. P. Daudey, J. P. Malrieu, Phys. Rev. A35, 4930 (1987)Google Scholar
  24. 24.
    L. Meissner, K. Jankowski, J. Wasilewski, Int. J. Quantum Chem.34, 535 (1988); L. Meissner, Chem. Phys. Lett.255, 244 (1996); L. Meissner, J. Chem. Phys.108, 9227 (1998)Google Scholar
  25. 25.
    S. Chattopadhyay, U. Sinha Mahapatra, B. Datta, D. Mukherjee, Chem. Phys. Lett.357, 426 (2002)CrossRefGoogle Scholar
  26. 26.
    D. Mukherjee, Pramana12, 203 (1979)CrossRefGoogle Scholar
  27. 27.
    H. Reitz, W. Kutzelnigg, Chem. Phys. Lett.66, 11 (1979); W. Kutzelnigg, J. Chem. Phys.77, 3081 (1981)Google Scholar
  28. 28.
    M. Haque, U. Kaldor, Chem. Phys. Lett.117, 347 (1985),120, 261 (1985)Google Scholar
  29. 29.
    I. Lindgren, Phys. Scr.32, 291 (1985)CrossRefGoogle Scholar
  30. 30.
    D. Mukherjee, Proc. Ind. Acad. Sci.96, 145 (1986), Chem. Phys. Lett.125, 207 (1986), Int. J. Quantum Chem. Symp.20, 409 (1986)Google Scholar
  31. 31.
    B. Jezioroski, H. J. Monkhorst, Phys. Rev. A24, 1668 (1982); A. Balkova, S. A. Kucharski, L. Meissner, R. J. Bartlett, J. Chem. Phys.95, 4311 (1991)Google Scholar
  32. 32.
    D. Sinha, S. Mukhopadhyay, D. Mukherjee, Chem. Phys. Lett.129, 369 (1986)CrossRefGoogle Scholar
  33. 33.
    S. Pal, M. Rittby, R. J. Bartlett, D. Sinha, D. Mukherjee, Chem. Phys. Lett.137, 273 (1987)CrossRefGoogle Scholar
  34. 34.
    I. Lindgren, D. Mukherjee, Phys. Rep.151, 93 (1987)CrossRefGoogle Scholar
  35. 35.
    S. Pal, M. Rittby, R. J. Bartlett, D. Sinha, D. Mukherjee, J. Chem. Phys.88, 4357 (1988)CrossRefGoogle Scholar
  36. 36.
    D. Mukherjee, S. Pal, Adv. Quantum. Chem.20, 291 (1989)CrossRefGoogle Scholar
  37. 37.
    R. J. Bartlett, J. F. Stanton, inReviews in Computational Chemistry, vol. 5, Eds. K. B. Lipkowitz, D. B. Boyd (VCH, New York, 1994), p. 65Google Scholar
  38. 38.
    J. Geertsen, M. Rittby, R. J. Bartlett, Chem. Phys. Lett.164, 57 (1989); D. C. Comeau, R. J. Bartlett, Chem. Phys. Lett.207, 414 (1993)Google Scholar
  39. 39.
    D. C. Comeau, R. J. Bartlett, Chem. Phys. Lett.207, 414 (1993)CrossRefGoogle Scholar
  40. 40.
    J. F. Stanton, R. J. Bartlett, J. Chem. Phys.98, 7029 (1993)CrossRefGoogle Scholar
  41. 41.
    J. F. Stanton, J. Gauss, J. Chem. Phys.101, 8938 (1994)CrossRefGoogle Scholar
  42. 42.
    M. Nooijen, R. J. Bartlett, J. Chem. Phys.102, 3629 (1995),102, 6735 (1995)Google Scholar
  43. 43.
    A. I. Krylov, Ann. Rev. Phys. Chem.59, 433 (2008)CrossRefGoogle Scholar
  44. 44.
    H. Koch, P. Jørgensen, J. Chem. Phys.93, 3345 (1990)CrossRefGoogle Scholar
  45. 45.
    H. Nakatsuji, O. Kitao, M. Komori, inAspects of Many Body Effects in Molecules and Extended Systems, Lecture Notes in Chemistry, vol. 50, Ed. D. Mukherjee (Springer-Verlag, Heidelberg, 1989), p. 101Google Scholar
  46. 46.
    H. Nakatsuji, K. Hirao, J. Chem. Phys.68, 2053 (1978); H. Nakatsuji, Chem. Phys. Lett.67, 324 (1979),67, 329 (1979); K. Hirao, Y. Hatano, Chem. Phys. Lett.111, 533 (1984); K. Hirao, J. Chem. Phys.83, 1433 (1985), Theor. Chim. Acta71, 231 (1987); H. Wasada, K. Hirao, Chem. Phys. Lett.139, 155 (1987); H. Nakatsuji, K. Hirao, Y. Mizukami, Chem. Phys. Lett.179, 555 (1991)Google Scholar
  47. 47.
    M. Nooijen, R. J. Bartlett, J. Chem. Phys.102, 291 (1995)CrossRefGoogle Scholar
  48. 48.
    J. D. Watts, R. J. Bartlett, Chem. Phys. Lett233, 81 (1995)CrossRefGoogle Scholar
  49. 49.
    M. Nooijen, R. J. Bartlett, J. Chem. Phys.106, 6449 (1997); M. Nooijen, R. J. Bartlett, J. Chem Phys.107, 6812 (1997)Google Scholar
  50. 50.
    A. I. Krylov, Chem. Phys. Lett.338, 375 (2001); A. I. Krylov, Acc. Chem. Res.39, 83 (2006)Google Scholar
  51. 49.
    R. J. Bartlett, inModern Electronic Structure Theory, Part II, Advanced Series in Physical Chemistry, vol. 2, Ed. D. R. Yarkony (World Scientific, Singapore, 1995), p. 1047Google Scholar
  52. 52.
    M. Nooijen, R. J. Bartlett, J. Chem. Phys.106, 6441 (1997),107, 6812 (1997); S. R. Gwaltney, R. J. Bartlett, M. Nooijen, J. Chem. Phys.111, 58 (1999)Google Scholar
  53. 53.
    M. Wladyslawski, M. Nooijen, inLow-Lying Potential Energy Surfaces, ACS Symposium Series, vol. 828, Eds. M. R. Hoffmann, K. G. Dyall (ACS, Washington, DC, 2002), pp. 65–92; M. Tobita, S. A. Perera, M. Musial, R. J. Bartlett, M. Nooijen, J. S. Lee, J. Chem. Phys.119, 10713 (2003); A. I. Krylov, Ann. Rev. Phys. Chem.59, 433 (2008)Google Scholar
  54. 54.
    J. F. Stanton, J. Chem. Phys.99, 8840 (1993)CrossRefGoogle Scholar
  55. 55.
    J. F. Stanton, J. Gauss, J. Chem. Phys.103, 88931 (1995)CrossRefGoogle Scholar
  56. 56.
    S. R. Gwaltney, R. J. Bartlett, M. Nooijen, J. Chem. Phys.111, 58 (1999)CrossRefGoogle Scholar
  57. 57.
    S. Pal, Phys. Rev. A39, 39 (1989), Int. J. Quantum. Chem.41, 443 (1992)Google Scholar
  58. 58.
    D. Ajitha, S. Pal, Phys. Rev. A56, 2658 (1997), Chem. Phys. Lett.309, 457 (1999), J. Chem. Phys.114, 3380 (2001)Google Scholar
  59. 59.
    D. Ajitha, N. Vaval, S. Pal, J. Chem. Phys.110, 2316 (1999)CrossRefGoogle Scholar
  60. 60.
    D. Ajitha, S. Pal, J. Chem. Phys.114, 3380 (2001)CrossRefGoogle Scholar
  61. 61.
    P. Szalay, Int. J. Quantum. Chem.55, 151 (1995)CrossRefGoogle Scholar
  62. 62.
    K. R. Shamasundar, S. Asokan, S. Pal, J. Chem. Phys.120, 6381 (2004)CrossRefGoogle Scholar
  63. 63.
    K. R. Shamasundar, S. Pal, Int. J. Mol. Sci.3, 710 (2002)CrossRefGoogle Scholar
  64. 64.
    P. U. Manohar, N. Vaval, S. Pal, J. Mol. Struct. (THEOCHEM)768, 91 (2006); P. U. Manohar, S. Pal, Chem. Phys. Lett.438, 321 (2007)Google Scholar
  65. 65.
    P. U. Manohar, S. Pal, AIP Conference Proceedings, Computational Methods in Science and Engineering: Theory and Computation: Old Problems and New Challenges963, 337 (2007)Google Scholar
  66. 66.
    A. Bag, P. U. Manohar, N. Vaval, S. Pal, J. Chem. Phys.131, 024102 (2009)CrossRefGoogle Scholar
  67. 67.
    A. Bag, P. U. Manohar, S. Pal, Comp. Lett.3, 351 (2007)CrossRefGoogle Scholar
  68. 68.
    A. Dalgarno, A. L. Stewart, Proc. R. Soc. Lond. A238, 269 (1957)CrossRefGoogle Scholar
  69. 69.
    A. Bag, S. Bhattacharyay, S. Pal, in Recent Advances in Spectroscopy: Astrophysical, Theoretical and Experimental perspectives (in press)Google Scholar
  70. 70.
    J. Paldus, inRecent Advances in Computational Chemistry, Recent Advances in Coupled-Cluster Methods, vol. 3, Ed. R. J. Bartlett (World Scientific, Singapore, 1997), p. 183Google Scholar
  71. 71.
    J. F. Stanton, R. J. Bartlett, J. Chem. Phys.98, 7029 (1993); J. Stanton, J. Gauss, J. Chem. Phys.101, 8938 (1994)Google Scholar
  72. 72.
    I. Lindgren, J. Morrison, inAtomic Many-Body Theory (Springer-Verlag, Berlin, 1982)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Prashant Uday Manohar
    • 1
    Email author
  • Kodagenahalli R. Shamasundar
    • 2
  • Arijit Bag
    • 3
  • Nayana Vaval
    • 3
  • Sourav Pal
    • 3
  1. 1.Department of ChemistryUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Universität StuttgartInstitut für Theoretische ChemieStuttgartGermany
  3. 3.Physical Chemistry DivisionNational Chemical LaboratoryPuneIndia

Personalised recommendations