Perturbative Approximations to Avoid Matrix Diagonalization

  • Péter R. SurjánEmail author
  • Ágnes Szabados
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 13)


With the aim of developing linear-scaling methods, we discuss perturbative approaches designed to avoid diagonalization of large matrices. Approximate molecular orbitals can be corrected by perturbation theory, in course of which the Laplace transformation technique proposed originally by Almløf facilitates linear scaling. The first order density matrix P corresponding to a one-electron problem can be obtained from an iterative formula which preserves the trace and the idempotency of P so that no purification procedures are needed. For systems where P is sparse, the procedure leads to a linear scaling method. The algorithm is useful in course of geometry optimization or self-consistent procedures, since matrix P of the previous step can be used to initialize the density matrix iteration at the next step. Electron correlation methods based on the Hartree-Fock density matrix, without making reference to molecular orbitals are commented on.


Linear scaling Density matrix Laplace-transform Idempotency conserving iteration 



This work has been supported by the Hungarian National Research Fund (OTKA), grant numbers NI-67702, K-81588 and K-81590. The European Union and the European Social Fund have also provided financial support to the project under the grant agreement no. TÁMOP 4.2.1./B-09/1/KMR-2010-0003.


  1. 1.
    Roos BO, Siegbahn PEM (1997) In: Schaefer HF (ed) Modern theoretical chemistry, vol 3, Chapter 7. Plenum, New York, NYGoogle Scholar
  2. 2.
    Davidson ER (1975) J Comp Phys 17:87CrossRefGoogle Scholar
  3. 3.
    Abrikosov IA, Niklasson AMN, Simak SI, Johansson B, Ruban AV, Skriver HL (1996) Phys Rev Lett 76:4203CrossRefGoogle Scholar
  4. 4.
    Reidinger R, Benard M (1991) J Chem Phys 94:1222CrossRefGoogle Scholar
  5. 5.
    Löwdin P-O (1955) Phys Rev 97:1474CrossRefGoogle Scholar
  6. 6.
    McWeeny R (1962) Phys Rev 126:1028CrossRefGoogle Scholar
  7. 7.
    Li X-P, Nunes RW, Vanderbilt D (1993) Phys Rev B 47:10891CrossRefGoogle Scholar
  8. 8.
    Challacombe M (1999) J Chem Phys 110:2332CrossRefGoogle Scholar
  9. 9.
    Palser AHR, Manolopoulos DE (1998) Phys Rev B 58:12704CrossRefGoogle Scholar
  10. 10.
    Yang W (1991) Phys Rev Lett 66:1438CrossRefGoogle Scholar
  11. 11.
    Yang W (1991) Phys Rev A 44:7823CrossRefGoogle Scholar
  12. 12.
    Yang W, Lee T-S (1995) J Chem Phys 103:5674CrossRefGoogle Scholar
  13. 13.
    Baer R, Head-Gordon M (1998) Phys Rev B 58:15296CrossRefGoogle Scholar
  14. 14.
    Kenoufi A (2004) J Polonyi Phys Rev B 70:205105CrossRefGoogle Scholar
  15. 15.
    Németh K, Scuseria GE (2000) J Chem Phys 113:6035CrossRefGoogle Scholar
  16. 16.
    Goedecker S (1999) Rev Mod Phys 71:1085CrossRefGoogle Scholar
  17. 17.
    Wu SY, Jayanthi CS (2002) Phys Rep 358:1CrossRefGoogle Scholar
  18. 18.
    Almlöf J (1991) Chem Phys Lett 176:319CrossRefGoogle Scholar
  19. 19.
    Häser M, Almlöf J (1992) J Chem Phys 96:489CrossRefGoogle Scholar
  20. 20.
    Ayala PY, Scuseria GE (1999) J Chem Phys 110:3660CrossRefGoogle Scholar
  21. 21.
    Ayala PY, Kudin KN, Scuseria GE (2001) J Chem Phys 115:9698CrossRefGoogle Scholar
  22. 22.
    Lázár A, Surján PR, Paulsson M, Stafström S (2002) Int J Quant Chem 84:216CrossRefGoogle Scholar
  23. 23.
    Tabor S, Stafstrom S (1992) J Magn Magn Mater 104:2099CrossRefGoogle Scholar
  24. 24.
    Stafstrom S (1993) Phys Rev B 47:12437CrossRefGoogle Scholar
  25. 25.
    Paulsson M, Stafstrom S (1999) Phys Rev B 60:7939CrossRefGoogle Scholar
  26. 26.
    Hansson A, Stafström S (2003) Phys Rev B 67:075406CrossRefGoogle Scholar
  27. 27.
    Ahn KH, Kim Y-H, Wiersig J, Chang KJ (2003) Phys Rev Lett 90:026601CrossRefGoogle Scholar
  28. 28.
    Szabados A, Biró LP, Surján PR (2006) Phys Rev B 73:195404CrossRefGoogle Scholar
  29. 29.
    Surján PR, Lázár A, Szabados A (2003) Phys Rev A 68:062503CrossRefGoogle Scholar
  30. 30.
    Coleman AJ, Yukalov VI (2000) Reduced density matrices: Coulson’s chal-lenge. Springer, New York, NYCrossRefGoogle Scholar
  31. 31.
    Mazziotti DA (2003) Phys Rev E 68:066701CrossRefGoogle Scholar
  32. 32.
    Niklasson AMN (2003) Phys Rev B 68:233104CrossRefGoogle Scholar
  33. 33.
    Kryachko ES (2000) Chem Phys Lett 318:210CrossRefGoogle Scholar
  34. 34.
    Mazziotti DA (2001) J Chem Phys 115:8305CrossRefGoogle Scholar
  35. 35.
    Szakács P, Surján PR (2008) J Math Chem 43:314CrossRefGoogle Scholar
  36. 36.
    Ott E (1993) Chaos in dynamical systems. Cambridge University Press, CambridgeGoogle Scholar
  37. 37.
    Kőhalmi D, Szabados A, Surján PR (2005) Phys Rev Lett 95:13002CrossRefGoogle Scholar
  38. 38.
    Szekeres Zs, Mezey PG, Surján PR (2006) Chem Phys Lett 424:420CrossRefGoogle Scholar
  39. 39.
    Pissanetzky S (1984) Sparse matrix technology. Academic Press, LondonGoogle Scholar
  40. 40.
    Surján PR (2005) Chem Phys Lett 406:318CrossRefGoogle Scholar
  41. 41.
    Kobayashi M, Nakai H (2006) Chem Phys Lett 420:250CrossRefGoogle Scholar
  42. 42.
    Kobayashi M, Akama T, Nakai H (2006) J Chem Phys 125:204106CrossRefGoogle Scholar
  43. 43.
    Surján PR, Kőhalmi D, Rolik Z, Szabados A (2007) Chem Phys Lett 450:400CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Laboratory of Theoretical Chemistry, Institute of ChemistryEötvös UniversityBudapestHungary

Personalised recommendations