Linear Scaling Second Order Møller Plesset Perturbation Theory

  • Svein SaebøEmail author
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 13)


All traditional methods for electron correlation share a steep power law dependence on the molecular size. This high scaling prohibits the use of these methods to large systems in spite of the very impressive advances in computer technology over the past decades. Clearly, this problem cannot be solved with improvements of computers alone, and new methods reducing the power law scaling to one or near one must be developed. In this chapter some linear of low scaling methods for electron correlation will be reviewed. The focus will be on the linear scaling MP2 methods, but other more accurate correlation methods will also be briefly discussed. In addition, the very efficient RI-MP2 will be discussed even though the high power law scaling of conventional MP2 has not been reduced. A discussion of the RI-MP2 method has been included since it is perhaps an order of magnitude more efficient than other efficient MP2 methods. The RI or density fitting approach has now been combined with the local correlation method, and the RI-LMP2 method exhibits linear scaling with the size of the system. Most of the methods discussed herein are based on the local correlation method introduced by Pulay and Saebø in the early eighties and developed further by Schütz, Werner and co-workers. The topic was reviewed in 2002 and this review will focus on the more recent advances in this field. A new linearly scaling LMP2 approach yielding essentially identical results to conventional canonical MP2 will be described, and MP2 calculations with around 5,000 contracted basis functions have been performed without density fitting using this approach.


Electron correlation Møller-Plesset perturbation theory Local correlation Linear scaling 


  1. 1.
    Pulay P (1983) Chem PhysLett 100:151Google Scholar
  2. 2.
    Saebø S, Pulay P (1985) Chem Phys Lett 113:13CrossRefGoogle Scholar
  3. 3.
    Pulay P, Saebø S (1986) Theor Chim Acta 69:357CrossRefGoogle Scholar
  4. 4.
    Saebø S, Pulay P (1987) J Chem Phys 86:914CrossRefGoogle Scholar
  5. 5.
    Saebø S, Pulay P (1988) J Chem Phys 88:1884CrossRefGoogle Scholar
  6. 6.
    Saebø S (1992) Int J Quantum Chem 42:217CrossRefGoogle Scholar
  7. 7.
    Saebø S, Pulay P (1993) Annu Rev Phys Chem 44:213CrossRefGoogle Scholar
  8. 8.
    Saebø S (2002) In: Leszczynski J (ed) Computational chemistry. Review of current trends, vol 7. World Scientific, Singapore, p 63Google Scholar
  9. 9.
    Carter EA, Walter D (2004) In: von Ragué Schleyer P, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF III, Schreiner PR (eds) Encyclopedia of computational chemistry (online edition). Wiley, ChichesterGoogle Scholar
  10. 10.
    Friesner RA, Murphy RB, Beachy MD, Ringnalda MN, Pollard WT, Dunietz RB, Cao Y (1999) J Phys Chem A 103:1913CrossRefGoogle Scholar
  11. 11.
    Ayala PY, Scuseria GE (1999) J Chem Phys 110:3660CrossRefGoogle Scholar
  12. 12.
    Martinez TJ, Carter EA (1994) J Chem Phys 100:3631CrossRefGoogle Scholar
  13. 13.
    Reynolds G, Martinez TJ, Carter EA (1996) J Chem Phys 105:6455CrossRefGoogle Scholar
  14. 14.
    Lee MS, Maslen PE, Head-Gordon M (2000) J Chem Phys 112:3592CrossRefGoogle Scholar
  15. 15.
    Schütz M, Hetzer P, Werner H-J (1999) J Chem Phys 111:5691CrossRefGoogle Scholar
  16. 16.
    Hetzer G, Schütz M, Stoll H, Werner H-J (2000) J Chem Phys 113:9443CrossRefGoogle Scholar
  17. 17.
    Hampel C, Werner H-J (1996) J Chem Phys 104:6286CrossRefGoogle Scholar
  18. 18.
    Schütz M, Werner H-J (2001) J Chem Phys 114:661CrossRefGoogle Scholar
  19. 19.
    Schütz M (2002) Phys Chem Chem Phys 4:3941CrossRefGoogle Scholar
  20. 20.
    Schütz M, Werner H-J (2000) Chem Phys Lett 318:370CrossRefGoogle Scholar
  21. 21.
    Schütz M (2000) J Chem Phys 113:9986CrossRefGoogle Scholar
  22. 22.
    Schütz M (2002) J Chem Phys 116:8772CrossRefGoogle Scholar
  23. 23.
    Saebø S, Pulay P (1986) Chem Phys Lett 131:384CrossRefGoogle Scholar
  24. 24.
    Pulay P, Saebø S (1985) Chem Phys Lett 117:37CrossRefGoogle Scholar
  25. 25.
    Boughton JW, Pulay P (1993) Int J Quantum Chem 47:49CrossRefGoogle Scholar
  26. 26.
    Pulay P (1986) J Chem Phys 85:1703CrossRefGoogle Scholar
  27. 27.
    Saebø S, Boggs JE, Fan K (1992) J Phys Chem 96:926CrossRefGoogle Scholar
  28. 28.
    Saebø S (1990) Int J Quantum Chem 38:641CrossRefGoogle Scholar
  29. 29.
    Saebø S, Pulay P (2001) J Chem Phys 115:3975CrossRefGoogle Scholar
  30. 30.
    Feyereissen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359CrossRefGoogle Scholar
  31. 31.
    Kendall RA, Früchtl HA (1997) Theor Chem Acc 97:158CrossRefGoogle Scholar
  32. 32.
    Vahtras O, Almlöf J, Feiereissen MW (1993) Chem Phys Lett 213:514CrossRefGoogle Scholar
  33. 33.
    Weigen F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143CrossRefGoogle Scholar
  34. 34.
    Weigen F, Kohn A, Hättig C (1998) J Chem Phys 109: 1593CrossRefGoogle Scholar
  35. 35.
    Hättig C (2005) Phys Chem Chem Phys 7:59CrossRefGoogle Scholar
  36. 36.
    Berthold DE, Harrison RJ (1998) J Chem Phys 109:1593CrossRefGoogle Scholar
  37. 37.
    Hellweg A, Hättig C, Höfner S, Klopper W (2007) Theor Chem Acc 117:587CrossRefGoogle Scholar
  38. 38.
    Weigen F, Häser M (1997) Theor Chem Acc 97:331CrossRefGoogle Scholar
  39. 39.
    Katoda M, Nagase S (2009) Int J Quantum Chem 109:2121CrossRefGoogle Scholar
  40. 40.
    Werner H-J, Manby FR, Knowles PJ (2003) J Chem Phys 118:8149CrossRefGoogle Scholar
  41. 41.
    Saebø S, Baker J, Wolinski K, Pulay P (2004) J Chem Phys 120:11423CrossRefGoogle Scholar
  42. 42.
    El-Azhary A, Rauhut G, Pulay P, and Werner H-J (1998) J Chem Phys 108:5185CrossRefGoogle Scholar
  43. 43.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  44. 44.
    Bartlett RJ, Purvis GD (1978) Int J Quant Chem 14:561CrossRefGoogle Scholar
  45. 45.
    Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quantum Chem 14:545CrossRefGoogle Scholar
  46. 46.
    Pulay P, Saebø S, Meyer W (1984) J Chem Phys 81:1901CrossRefGoogle Scholar
  47. 47.
    Almlöf J (1991) Chem Phys Lett 176:319CrossRefGoogle Scholar
  48. 48.
    Häser M, Almlöf J (1992) J Chem Phys 96:489CrossRefGoogle Scholar
  49. 49.
    Häser M (1993) Theor Chim Acta 87:147CrossRefGoogle Scholar
  50. 50.
    Boys SF (1966) In: Löwdin PO (ed) Quantum theory of atoms, molecules, and the solid state. Academic, New York, NY, p 253Google Scholar
  51. 51.
    Pipek J, Mezey PG (1989) J Chem Phys 90:4916CrossRefGoogle Scholar
  52. 52.
    Boughton JW, Pulay P (1993) J Comput Chem 14:736CrossRefGoogle Scholar
  53. 53.
    Meyer W, Frommhold L (1986) Phys Rev A 33:3807CrossRefGoogle Scholar
  54. 54.
    Rauhut G, Pulay P, Werner H-J (1998) J Comput Chem 19:1241CrossRefGoogle Scholar
  55. 55.
    Pulay P, Saebø S, Wolinski K (2001) Chem Phys Lett 344:543CrossRefGoogle Scholar
  56. 56.
    Baker J, Pulay P (2002) J Comput Chem 23:1150CrossRefGoogle Scholar
  57. 57.
    Pulay P, Meyer W, Saebø S unpublished resultsGoogle Scholar
  58. 58.
    Yoshimine M (1969) Report RJ-555 IBM Research Laboratory, San Jose, CAGoogle Scholar
  59. 59.
    Baker J, Wolinski K, Malagoli M, Kinghorn D, Wolinski P, Magyarfalvi G, Saebo S, Janowski T, Pulay P (2009) J Comput Chem 30:317CrossRefGoogle Scholar
  60. 60.
    Walter D, Szilva KNAB, Carter EA (2002) J Chem Phys 117:1982CrossRefGoogle Scholar
  61. 61.
    Boys SF, Shavitt I (1959) University of Wisconsin, RepWISAF-13Google Scholar
  62. 62.
    van Alsenoy C (1988) J Comp Chem 8:620CrossRefGoogle Scholar
  63. 63.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283CrossRefGoogle Scholar
  64. 64.
    Schütz M, Werner H-J, Lindh R, Manby FR (2004) J Chem Phys 121:737CrossRefGoogle Scholar
  65. 65.
    Werner H-J, Knowles PJ, Lindh R, Manby FR, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2008) MOLPRO, version 2008.1, a package of ab initio programsGoogle Scholar
  66. 66.
    Rauhut G, Werner H-J (2003) Phys Chem Chem Phys 5:2001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of ChemistryMississippi State UniversityMississippi StateUSA

Personalised recommendations