Cholesky Decomposition Techniques in Electronic Structure Theory

  • Francesco AquilanteEmail author
  • Linus Boman
  • Jonas Boström
  • Henrik Koch
  • Roland Lindh
  • Alfredo Sánchez de Merás
  • Thomas Bondo Pedersen
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 13)


We review recently developed methods to efficiently utilize the Cholesky decomposition technique in electronic structure calculations. The review starts with a brief introduction to the basics of the Cholesky decomposition technique. Subsequently, examples of applications of the technique to ab inito procedures are presented. The technique is demonstrated to be a special type of a resolution-of-identity or density-fitting scheme. This is followed by explicit examples of the Cholesky techniques used in orbital localization, computation of the exchange contribution to the Fock matrix, in MP2, gradient calculations, and so-called method specific Cholesky decomposition. Subsequently, examples of calibration of the method with respect to computed total energies, excitation energies, and auxiliary basis set pruning are presented. In particular, it is demonstrated that the Cholesky method is an unbiased method to derive auxiliary basis sets. Furthermore, details of the implementational considerations are put forward and examples from a parallel Cholesky decomposition scheme is presented. Finally, an outlook and perspectives are presented, followed by a summary and conclusions section. We are of the opinion that the Cholesky decomposition method is a technique that has been overlooked for too long. We have just recently started to understand how to efficiently incorporate the method in existing ab initio programs. The full potential of the Cholesky technique has not yet been fully explored.


Cholesky decomposition Reduced scaling Low-rank tensor approximation Inner projection Density fitting Multi-configurational methods Orbital localization Linear-scaling correlation methods 



ASM acknowledges financial suport from Spanish FEDER+MEC project CTQ2007-67143-C02-01/BQU. RL and JB would like to thank the Swedish Research Council directly and through the Linnaeus Center of Excellence on Organizing Molecular Matter at Lund University, Sweden, for financial support. TBP acknowledges financial support from the CoE Centre for Theoretical and Computational Chemistry (179568/V30). FA would like to acknowledge funding from the Swiss National Science Foundation (SNF), Grant No. 200020-120007. HK and LB would like to thank the Norwegian Research Council for support (Grant No. 154011/420). The authors thank Eirik Hjertenæs at the Norwegian University of Science and Technology for proof-reading the manuscript.


  1. 1.
    Whitten JL (1973) J Chem Phys 58:4496CrossRefGoogle Scholar
  2. 2.
    Baerends EJ, Ellis DE, Ros P (1973) Chem Phys 2:41CrossRefGoogle Scholar
  3. 3.
    Jafri JA, Whitten JL (1974) J Chem Phys 61:2116CrossRefGoogle Scholar
  4. 4.
    Sambe H, Felton RH (1975) J Chem Phys 62:1122CrossRefGoogle Scholar
  5. 5.
    Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:3396CrossRefGoogle Scholar
  6. 6.
    Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71, 4993CrossRefGoogle Scholar
  7. 7.
    Feyereisen M, Fitzgerald G, Komornicki A (1993) Chem Phys Lett 208:359CrossRefGoogle Scholar
  8. 8.
    Vahtras O, Almlöf, Feyereisen M (1993) Chem Phys Lett 213:514CrossRefGoogle Scholar
  9. 9.
    Gallant RT, St-Amant A (1996) Chem Phys Lett 256:569CrossRefGoogle Scholar
  10. 10.
    Fonseca Guerra C, Snijders JG, te Velde G, Baerends EJ (1998) Theor Chem Acc 99:391Google Scholar
  11. 11.
    Dunlap BI (2000) J Mol Struct Theochem 501–502:221CrossRefGoogle Scholar
  12. 12.
    Sierka M, Hogekamp A, Ahlrichs R (2003) J Chem Phys 118:9136CrossRefGoogle Scholar
  13. 13.
    Sodt A, Subotnik JE, Head-Gordon M (2006) J Chem Phys 125:194109CrossRefGoogle Scholar
  14. 14.
    Sałek P, Høst S, Thøgersen L, Jørgensen P, Manninen P, Olsen J, Jansík B, Reine S, Pawłowski F, Tellgren E, Helgaker T, Coriani S (2007) J Chem Phys 126:Art.Nr. 114110CrossRefGoogle Scholar
  15. 15.
    Reine S, Tellgren E, Krapp A, Kjærgaard T, Helgaker T, Jansík B, Høst S, Sałek P (2008) J Chem Phys 129:Art.Nr. 104101CrossRefGoogle Scholar
  16. 16.
    Köster AM del Campo JM, Janetzko F, Zuniga-Gutierrez B (2009) J Chem Phys 130:Art.Nr. 114106CrossRefGoogle Scholar
  17. 17.
    Domínguez-Soria, G Geudtner, JL Morales, P Calaminici, Köster, AM (2009) J Chem Phys 131:Art.Nr. 124102CrossRefGoogle Scholar
  18. 18.
    Burow AM, Sierka M, Mohamed F (2009) J Chem Phys 131:Art.Nr. 214101CrossRefGoogle Scholar
  19. 19.
    Weigend F (2002) Phys Chem Chem Phys 4:4285CrossRefGoogle Scholar
  20. 20.
    Polly R, Werner HJ, Manby FR, Knowles P (2004) Mol Phys 102:2311CrossRefGoogle Scholar
  21. 21.
    Aquilante F, Pedersen TB, Lindh R (2007) J Chem Phys 126:Art.Nr. 194106CrossRefGoogle Scholar
  22. 22.
    Sodt AM, Head-Gordon (2008) J Chem Phys 128:Art.Nr. 104106CrossRefGoogle Scholar
  23. 23.
    Benoît Cdt (1924) Bull Géodésique 2:67CrossRefGoogle Scholar
  24. 24.
    Beebe NHF, Linderberg J (1977) Int J Quantum Chem 12:683CrossRefGoogle Scholar
  25. 25.
    Røeggen I, Wisløff-Nilssen E (1986) Chem Phys Lett 132:154CrossRefGoogle Scholar
  26. 26.
    Røeggen I, Veseth L (2005) Int J Quantum Chem 101:201CrossRefGoogle Scholar
  27. 27.
    Røeggen I (2006) J Chem Phys 124:Art.Nr.184502CrossRefGoogle Scholar
  28. 28.
    Røeggen I (2006) Theor Chem Acc 116:683CrossRefGoogle Scholar
  29. 29.
    Røeggen I (2007) J Chem Phys 126:Art.Nr. 204303CrossRefGoogle Scholar
  30. 30.
    Røeggen I, Johansen T (2008) J Chem Phys 128:Art.Nr. 194107CrossRefGoogle Scholar
  31. 31.
    O’Neal DW, Simons J (1989) Int J Quantum Chem 36:673CrossRefGoogle Scholar
  32. 32.
    Koch, H Sánchez de Merás A, Pedersen TB (2003) J Chem Phys 118:9481CrossRefGoogle Scholar
  33. 33.
    Pedersen TB, Sánchez de Merás A, Koch H (2004) J Chem Phys 120:8887CrossRefGoogle Scholar
  34. 34.
    Christiansen O, Koch H, Jörgensen P (1995) Chem Phys Lett 243:409CrossRefGoogle Scholar
  35. 35.
    García Cuesta I, Pedersen TB, Koch H, Sánchez de Merás AMJ (2004) Chem Phys Lett 390:170CrossRefGoogle Scholar
  36. 36.
    Pedersen TB, Koch H, Boman L, Sánchez de Merás AMJ (2004) Chem Phys Lett 393:319CrossRefGoogle Scholar
  37. 37.
    García Cuesta I, Pedersen TB, Koch H, Sánchez de Merás A (2006) Chem Phys Chem 7:2503CrossRefGoogle Scholar
  38. 38.
    Fernández B, Pedersen TB, Sánchez de Merás A, Koch H (2007) Chem Phys Lett 441:332CrossRefGoogle Scholar
  39. 39.
    García Cuesta I, Sánchez Marín J, Pedersen TB, Koch H, Sánchez de Merás A (2008) Phys Chem Chem Phys 10:361CrossRefGoogle Scholar
  40. 40.
    Boman L, Koch H, Sánchez de Merás A (2008) J Chem Phys 129:Art.Nr. 134107CrossRefGoogle Scholar
  41. 41.
    Pedersen TB, Kongsted J, Crawford TD, Ruud K (2009) J Chem Phys 130:Art.Nr. 034310CrossRefGoogle Scholar
  42. 42.
    Pedersen TB, Kongsted J, Crawford TD (2009) Chirality 21:S68CrossRefGoogle Scholar
  43. 43.
    Sánchez de Merás A, Koch H, García Cuesta I, Boman L (2010) J Chem Phys 132: Art.Nr. 204105CrossRefGoogle Scholar
  44. 44.
    Aquilante F, De Vico L, Ferré N, Ghigo G, Malmqvist PA, Neogrády P,Pedersen TB, Pitoňák M, Reiher M, Roos BO, Serrano-Andrés L, Urban, M Veryazov V, Lindh R (2010) J Comput Chem 31:224CrossRefGoogle Scholar
  45. 45.
    Aquilante F, Pedersen TB, Roos BO, Sánchez de Merás A, Koch H (2008) J Chem Phys 129:Art.Nr. 24113CrossRefGoogle Scholar
  46. 46.
    Aquilante F, Malmqvist PÅ, Pedersen TB, Ghosh A, Roos BO (2006) J Chem Theory Comput 4:694CrossRefGoogle Scholar
  47. 47.
    Aquilante F, Pedersen TB (2007) Chem Phys Lett 449:354CrossRefGoogle Scholar
  48. 48.
    Aquilante F, Pedersen TB, Sánchez de Merás A, Koch H (2006) J Chem Phys 125:Art.Nr. 174101CrossRefGoogle Scholar
  49. 49.
    Aquilante F, Lindh R, Pedersen TB (2007) J Chem Phys 127:Art.Nr. 114107CrossRefGoogle Scholar
  50. 50.
    Öhrn A, Aquilante F (2007) Phys Chem Chem Phys 9:470CrossRefGoogle Scholar
  51. 51.
    Roos BO, Veryazov V, Conradie J, Taylor PR, Ghosh A (2008) J Phys Chem B 112:14099CrossRefGoogle Scholar
  52. 52.
    Aquilante F, Lindh R, Pedersen TB (2008) J Chem Phys 129:Art.Nr. 034106CrossRefGoogle Scholar
  53. 53.
    Pierloot K, Vancoillie S (2008) J Chem Phys 128:Art.Nr. 034104CrossRefGoogle Scholar
  54. 54.
    Radoń M, Pierloot K (2008) J Phys Chem A 112:11824CrossRefGoogle Scholar
  55. 55.
    Bozoglian F, Romain S, Ertem MZ, Todorova TK, Sens C, Mola J, Montserrat R, Romero I, Benet-Buchholz J, Fontrodona X, Cramer CJ, Gagliardi L, Llobet A (2009) J Am Chem Soc 131:15176CrossRefGoogle Scholar
  56. 56.
    Söderhjelm P, Aquilante F, Ryde U (2009) J Phys Chem B 113:11085CrossRefGoogle Scholar
  57. 57.
    Srnec M, Aquilante F, Ryde U, Rulíšek L (2009) J Phys Chem B 113:6074CrossRefGoogle Scholar
  58. 58.
    Pedersen TB, Aquilante F, Lindh R (2009) Theor Chem Acc 124:1CrossRefGoogle Scholar
  59. 59.
    Huber SM, Shahi ARM, Aquilante F, Cramer CJ, Gagliardi L (2009) J Chem Theory Comput 5:2967CrossRefGoogle Scholar
  60. 60.
    Huber SM, Ertem MZ, Aquilante F, Gagliardi L, Tolman WB, Cramer CJ (2009) Chem Eur J 15:4886CrossRefGoogle Scholar
  61. 61.
    Boström J, Aquilante F, Pedersen TB, Lindh R (2009) J Chem Theory Comput 5:1545CrossRefGoogle Scholar
  62. 62.
    Aquilante F, Gagliardi L, Pedersen TB, Lindh R (2009) J Chem Phys 130:Art.Nr. 154107CrossRefGoogle Scholar
  63. 63.
    Riley KE, Pitonňák M, Černý J, Hobza P (2010) J Chem Theory Comput 6:66CrossRefGoogle Scholar
  64. 64.
    Pitoňák M, Heßelmann A (2010) J Chem Theory Comput 6:168CrossRefGoogle Scholar
  65. 65.
    Pitoňák M, Neogŕady P, Hobza P (2010) Phys Chem Chem Phys 12:1369CrossRefGoogle Scholar
  66. 66.
    Vysotskiy VP, Cederbaum LS (2010) J Chem Phys 132:Art.Nr. 044110CrossRefGoogle Scholar
  67. 67.
    Chwee TS, Carter EA (2010) J Chem Phys 132:074104CrossRefGoogle Scholar
  68. 68.
    Tabookht Z, López X, de Graaf C (2010) J Phys Chem A 114:2028CrossRefGoogle Scholar
  69. 69.
    Boström J, Delcey MG, Aquilante F, Serrano-Andrés L, Pedersen TB, Lindh R (2010) J Chem Theory Comput 6:P747CrossRefGoogle Scholar
  70. 70.
    Löwdin PO (1965) J Chem Phys 43:S175CrossRefGoogle Scholar
  71. 71.
    Löwdin PO (1970) Int J Quantum Chem S4:231Google Scholar
  72. 72.
    Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  73. 73.
    Koch H, Sánchez de Merás A (2000) J Chem Phys 113:508CrossRefGoogle Scholar
  74. 74.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Chem Phys Lett 240:283CrossRefGoogle Scholar
  75. 75.
    Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116:3175CrossRefGoogle Scholar
  76. 76.
    Weigend F (2006) Phys Chem Chem Phys 8:1057CrossRefGoogle Scholar
  77. 77.
    Jung Y, Sodt A, Gill PMW, Head-Gordon M (2005) Proc Natl Acad Sci USA 102:6692CrossRefGoogle Scholar
  78. 78.
    Werner HJ, Manby FR (2006) J Chem Phys 124:Art.Nr. 054114CrossRefGoogle Scholar
  79. 79.
    Boys SF (1960) Rev Mod Phys 32:296CrossRefGoogle Scholar
  80. 80.
    Edmiston C, Ruedenberg K (1963) Rev Mod Phys 35:457CrossRefGoogle Scholar
  81. 81.
    Pipek J, Mezey PG (1989) J Chem Phys 90:4916CrossRefGoogle Scholar
  82. 82.
    Schweizer S, Kussmann J, Doser B, Ochsenfeld C (2008) J Comput Chem 29:1004CrossRefGoogle Scholar
  83. 83.
    Ziołkowski M, Jansík B, Jørgensen P, Olsen J (2009) J Chem Phys 131:Art.Nr. 124112CrossRefGoogle Scholar
  84. 84.
    Dunning TH Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  85. 85.
    Fernández B, Koch H, Makarewicz J (1999) J Chem Phys 111:5922CrossRefGoogle Scholar
  86. 86.
    Scuseria GE, Ayala PY (1999) J Chem Phys 111:8330CrossRefGoogle Scholar
  87. 87.
    Weigend F, Häser M (1997) Theor Chem Acc 97:331CrossRefGoogle Scholar
  88. 88.
    Hättig C (2003) J Chem Phys 118:7751CrossRefGoogle Scholar
  89. 89.
    Köhn A, Hättig C J Chem Phys 119:5021Google Scholar
  90. 90.
    Deglmann P, May K, Furche F, Ahlrichs R (2004) Chem Phys Lett 384:103CrossRefGoogle Scholar
  91. 91.
    Rappoport D, Furche F (2005) J Chem Phys 122:Art.Nr. 064105CrossRefGoogle Scholar
  92. 92.
    Baker J, Chan F (1996) J Comput Chem 17:888CrossRefGoogle Scholar
  93. 93.
    Curtiss LA, Raghavachari K, Redfern PC, Pople JA (1997) J Chem Phys 106:1063CrossRefGoogle Scholar
  94. 94.
    Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:11127CrossRefGoogle Scholar
  95. 95.
    Schreiber M, Silva-Junior M, Sauer SPA, Thiel W (2008) J Chem Phys 128:Art.Nr. 134110CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Francesco Aquilante
    • 1
    Email author
  • Linus Boman
    • 2
  • Jonas Boström
    • 3
  • Henrik Koch
    • 2
  • Roland Lindh
    • 4
  • Alfredo Sánchez de Merás
    • 5
  • Thomas Bondo Pedersen
    • 6
  1. 1.Department of Physical Chemistry, Sciences IIUniversity of GenevaGeneva 4Switzerland
  2. 2.Department of ChemistryNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Department of Theoretical Chemistry, Chemical CenterUniversity of LundLundSweden
  4. 4.Department of Quantum ChemistryUppsala UniversityUppsalaSweden
  5. 5.Instituto de Ciencia MolecularUniversitat de ValènciaValenciaSpain
  6. 6.Department of Chemistry, Centre for Theoretical and Computational ChemistryUniversity of OsloOsloNorway

Personalised recommendations