Advertisement

Two Critical Issues in Quantitative Modeling of Communicable Diseases: Inference of Unobservables and Dependent Happening

  • Hiroshi Nishiura
  • Masayuki Kakehashi
  • Hisashi Inaba
Chapter

Abstract

In this chapter, we discuss two critical issues which must be remembered whenever we examine epidemiologic data of directly transmitted infectious diseases. Firstly, we would like the readers to recognize the difference between observable and unobservable events in infectious disease epidemiology. Since both infection event and acquisition of infectiousness are generally not directly observable, the total number of infected individuals could not be counted at a point of time, unless very rigorous contact tracing and microbiological examinations were performed. Directly observable intrinsic parameters, such as the incubation period and serial interval, play key roles in translating observable to unobservable information. Secondly, the concept of dependent happening must be remembered to identify a risk of an infectious disease or to assess vaccine efficacy. Observation of a single infected individual is not independent of observing other individuals. A simple solution for dependent happening is to employ the transmission probability which is conditioned on an exposure to infection.

Keywords

Incubation period Serial interval Latent period Generation time Vaccine efficacy Vaccine effectiveness Herd immunity 

References

  1. 1.
    Anderson, R.M. (1991) Populations and infectious diseases: Ecology or epidemiology? J. Anim. Ecol. 60:1–50CrossRefGoogle Scholar
  2. 2.
    Anderson, R.M., May, R.M. (1982) Directly transmitted infectious diseases: Control by vaccination. Science 215:1053–1060CrossRefMathSciNetGoogle Scholar
  3. 3.
    Anderson, R.M., May, R.M. (1985) Vaccination and herd immunity to infectious diseases. Nature 318:323–329CrossRefGoogle Scholar
  4. 4.
    Anderson, R.M., May, R.M. (1990) Immunisation and herd immunity. Lancet 335:641–645CrossRefGoogle Scholar
  5. 5.
    Anderson, R.M., May, R.M. (1991) Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, OxfordGoogle Scholar
  6. 6.
    Anderson, R.M., Medley, G.F., May, R.M., Johnson, A.M. (1986) A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J. Math. Appl. Med. Biol. 3:229–263zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bailey, N.T.J. (1975) The Mathematical Theory of Infectious Diseases and Its Applications (2nd Ed). Charles Griffin, LondonzbMATHGoogle Scholar
  8. 8.
    Ball, F., Lyne, O. (2006) Optimal vaccination schemes for epidemics among a population of households, with application to variola minor in Brazil, Stat. Methods. Med. Res. 15:481–497MathSciNetGoogle Scholar
  9. 9.
    Ball, F., Mollison, D., Scalia-Tomba, G. (1997) Epidemics with two levels of mixing, Ann. Appl. Prob. 7:46–89zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Becker, N. (1995) Part 5: Data analysis: Estimation and prediction. Statistical challenges of epidemic data. In: Mollison, D. (ed.) Epidemic Models: Their Structure and Relation to Data, pp. 339–349. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Becker, N.G. (1997) Uses of the EM algorithm in the analysis of data on HIV/AIDS and other infectious diseases. Stat. Methods. Med. Res. 6:24–37CrossRefGoogle Scholar
  12. 12.
    Becker, N.G., Britton, T., O’Neill, P.D. (2003) Estimating vaccine effects on transmission of infection from household outbreak data. Biometrics. 59:467–475CrossRefMathSciNetGoogle Scholar
  13. 13.
    Becker, N.G., Britton, T., O’Neill, P.D. (2006) Estimating vaccine effects from studies of outbreaks in household pairs. Stat. Med. 25:1079–1093CrossRefMathSciNetGoogle Scholar
  14. 14.
    Becker, N.G., Watson, L.F., Carlin, J.B. (1991) A method of non-parametric back-projection and its application to AIDS data. Stat. Med. 10:1527–1542CrossRefGoogle Scholar
  15. 15.
    Begon, M., Bennett, M., Bowers, R.G., French, N.P., Hazel, S.M., Turner, J. (2002) A clarification of transmission terms in host-microparasite models: Numbers, densities and areas. Epidemiol. Infect. 129:147–153CrossRefGoogle Scholar
  16. 16.
    Brookmeyer, R. (1998) Incubation period of infectious diseases. In: Armitage, P., Colton, T. (eds.) Encyclopedia of Biostatistics, pp. 2011–2016. Wiley, New YorkGoogle Scholar
  17. 17.
    Brookmeyer, R., Gail, M.H. (1986) Minimum size of the acquired immunodeficiency syndrome (AIDS) epidemic in the United States. Lancet 2:1320–1322CrossRefGoogle Scholar
  18. 18.
    Brookmeyer, R., Gail, M.H. (1988) A method for obtaining short-term projections and lower bounds on the size of the AIDS epidemic. J. Am. Stat. Assoc. 83:301–308zbMATHCrossRefGoogle Scholar
  19. 19.
    Brookmeyer, R., Gail, M.H. (1994) AIDS Epidemiology: A Quantitative Approach (Monographs in Epidemiology and Biostatistics). Oxford University Press, New YorkGoogle Scholar
  20. 20.
    Brookmeyer, R., You, X. (2006) A hypothesis test for the end of a common source outbreak. Biometrics 62:61–65zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Chapin, C.V. (1912) The Sources and Modes of Infection (2nd Edition). John Wiley and Sons, New YorkGoogle Scholar
  22. 22.
    Colgate, S.A., Stanley, E.A., Hyman, J.M., Layne, S.P., Qualls, C. (1989) Risk behavior-based model of the cubic growth of acquired immunodeficiency syndrome in the United States. Proc. Natl. Acad. Sci. USA 86:4793–4797CrossRefGoogle Scholar
  23. 23.
    Colton, T., Johnson, T., Machin, D. (Eds) (1994) Proceedings of the Conference on Quantitative Methods for Studying AIDS, held in Blaubeuren, Germany, June 14–18, 1993. In: Stat. Med. 13:1899–2188Google Scholar
  24. 24.
    Cousens, S.N., Vynnycky, E., Zeidler, M., Will, R.G., Smith, P.G. (1997) Predicting the CJD epidemic in humans. Nature 385:197–198CrossRefGoogle Scholar
  25. 25.
    Cox, D.R. (1958) Planning of Experiments. John Wiley and Sons, New YorkzbMATHGoogle Scholar
  26. 26.
    Day, N.E., Gore, S.M., McGee, M.A., South, M. (1989) Predictions of the AIDS epidemic in the U.K.: The use of the back projection method. Philos. Trans. R. Soc. Lond. Ser. B. 325:123–134CrossRefGoogle Scholar
  27. 27.
    de Jong, M.C.M., Diekmann, O., Heesterbeek, J.A.P. (1995) How does transmission of infection depend on population size? In: Mollison, D. (ed.) Epidemic Models: Their Structure and Relation to Data, pp. 84–94. Cambridge University Press, CambridgeGoogle Scholar
  28. 28.
    Diekmann, O., Heesterbeek, J.A.P.: (2000) Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation. Wiley, New YorkGoogle Scholar
  29. 29.
    Diekmann, O., Heesterbeek, J.A., Metz, J.A. (1990) On the definition and the computation of the basic reproduction ratio $R_0$ in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28:365–382zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Dietz, K. (1993) The estimation of the basic reproduction number for infectious diseases. Stat. Methods. Med. Res. 2:23–41CrossRefGoogle Scholar
  31. 31.
    Donnelly, C.A., Ferguson, N.M., Ghani, A.C., Anderson, R.M. (2003) Extending backcalculation to analyse BSE data. Stat. Methods. Med. Res. 12:177–190zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Downie, A.W., St Vincent, L., Meiklejohn, G., Ratnakannan, N.R., Rao, A.R., Krishnan, G.N., Kempe, C.H. (1961) Studies on the virus content of mouth washings in the acute phase of smallpox. Bull. World Health Organ. 25:49–53Google Scholar
  33. 33.
    Dublin, L.I., Lotka, A.J. (1925) On the true rate of natural increase. J. Am. Stat. Assoc. 151:305–339CrossRefGoogle Scholar
  34. 34.
    Eichner, M. (2003) Case isolation and contact tracing can prevent the spread of smallpox. Am. J. Epidemiol. 158:118–128CrossRefGoogle Scholar
  35. 35.
    Eichner, M., Dietz, K. (2003) Transmission potential of smallpox: Estimates based on detailed data from an outbreak. Am. J. Epidemiol. 158:110–117CrossRefGoogle Scholar
  36. 36.
    Farewell, V.T., Herzberg, A.M., James, K.W., Ho, L.M., Leung, G.M. (2005) SARS incubation and quarantine times: When is an exposed individual known to be disease free? Stat. Med. 24:3431–3445CrossRefMathSciNetGoogle Scholar
  37. 37.
    Farrington, C.P. (2003) On vaccine efficacy and reproduction numbers. Math. Biosci. 185:89–109zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Fenner, F. (1948) The pathogenesis of the acute exanthems. An interpretation based upon experimental investigation with mouse-pox (infectious ectromelia of mice). Lancet ii:915–920CrossRefGoogle Scholar
  39. 39.
    Ferguson, N.M., Donnelly, C.A., Woolhouse, M.E., Anderson, R.M. (1997) The epidemiology of BSE in cattle herds in Great Britain. II. Model construction and analysis of transmission dynamics. Phil. Trans. R. Soc. Lond. Ser. B. 352:803–838CrossRefGoogle Scholar
  40. 40.
    Fine, P.E. (1993) Herd immunity: history, theory, practice. Epidemiol. Rev. 15:265–302Google Scholar
  41. 41.
    Fine, P.E. (2003) The interval between successive cases of an infectious disease. Am. J. Epidemiol. 158:1039–1047CrossRefGoogle Scholar
  42. 42.
    Fraser, C., Riley, S., Anderson, R.M., Ferguson, N.M. (2004) Factors that make an infectious disease outbreak controllable. Proc. Natl. Acad. Sci. USA 101:6146–6151CrossRefGoogle Scholar
  43. 43.
    Gail, M.H., Brookmeyer, R. (1988) Methods for projecting course of acquired immunodeficiency syndrome epidemic. J. Natl. Cancer. Inst. 80:900–911CrossRefGoogle Scholar
  44. 44.
    Greenland, S., Brumback, B. (2002) An overview of relations among causal modelling methods. Int. J. Epidemiol. 31:1030–1037CrossRefGoogle Scholar
  45. 45.
    Greenwood, M., Yule, G.U. (1915) The statistics of anti-typhoid and anti-cholera inoculations, and the interpretation of such statistics in general. Proc. R. Soc. Med. 8:113–190Google Scholar
  46. 46.
    Haber, M. (1999) Estimation of the direct and indirect effects of vaccination. Stat. Med. 18:2101–2109CrossRefGoogle Scholar
  47. 47.
    Haber, M., Longini, I.M., Halloran, M.E. (1991) Measures of the effects of vaccination in a randomly mixing population. Int. J. Epidemiol. 20:300–310CrossRefGoogle Scholar
  48. 48.
    Halloran, M.E. (1988) Concepts of infectious disease epidemiology. In: Rothman, K.J., Greenland, S. (eds.) Modern Epidemiology, 2nd Edition, pp. 529–554. Lippincott Williams and Wilkins, New YorkGoogle Scholar
  49. 49.
    Halloran, M.E. (1988) Secondary attack rate. In: Armitage, P., Colton, T. (eds.) Encyclopedia of Biostatistics, pp. 4025–4029. Wiley, New YorkGoogle Scholar
  50. 50.
    Halloran, M.E. (2001) Overview of study design. In: Thomas, J.C., Weber, D.J. (eds.) Epidemiologic Methods for the Study of Infectious Diseases, pp. 86–115. Oxford University Press, New YorkGoogle Scholar
  51. 51.
    Halloran, M.E., Haber, M.J., Longini, I.M., Struchiner, C.J. (1991) Direct and indirect effects in vaccine field efficacy and effectiveness. Am. J. Epidemiol. 133:323–331Google Scholar
  52. 52.
    Halloran, M.E., Hayden, F.G., Yang, Y., Longini, I.M., Monto, A.S. (2007) Antiviral effects on influenza viral transmission and pathogenicity: Observations from household-based trials. Am. J. Epidemiol. 165:212–221CrossRefGoogle Scholar
  53. 53.
    Halloran, M.E., Struchiner, C.J. (1991) Study designs for dependent happenings. Epidemiology 2:331–338CrossRefGoogle Scholar
  54. 54.
    Halloran, M.E., Struchiner, C.J. (1995) Causal inference in infectious diseases. Epidemiology 6:142–151CrossRefGoogle Scholar
  55. 55.
    Halloran, M.E., Struchiner, C.J., Longini, I.M. (1997) Study designs for evaluating different efficacy and effectiveness aspects of vaccines. Am. J. Epidemiol. 146:789–803Google Scholar
  56. 56.
    Haydon, D.T., Chase-Topping, M., Shaw, D.J., Matthews, L., Friar, J.K., Wilesmith, J., Woolhouse, M.E. (2003) The construction and analysis of epidemic trees with reference to the 2001 UK foot-and-mouth outbreak. Proc. R. Soc. Lond. Ser. B. 270:121–127CrossRefGoogle Scholar
  57. 57.
    Hernan, M.A., Robins, J.M. (2006) Instruments for causal inference: An epidemiologist’s dream? Epidemiology 17:360–372CrossRefGoogle Scholar
  58. 58.
    Hill, B.M. (1963) The three-parameter lognormal distribution and Bayesian analysis of a point-source epidemic. J. Am. Stat. Assoc. 58:72–84zbMATHCrossRefGoogle Scholar
  59. 59.
    Hope Simpson, R.E. (1948) The period of transmission in certain epidemic diseases: An observational method for its discovery. Lancet. 2:755–760CrossRefGoogle Scholar
  60. 60.
    Inaba, H., Nishiura, H. (2008) The state-reproduction number for a multistate class age structured epidemic system and its application to the asymptomatic transmission model. Math. Biosci. 216:77–89zbMATHCrossRefMathSciNetGoogle Scholar
  61. 61.
    Jewell, N.P., Dietz, K., Farewell, V.T. (1992) AIDS Epidemiology: Methodological Issues. Birkhauser, BerlinGoogle Scholar
  62. 62.
    John, T.J., Samuel, R. (2000) Herd immunity and herd effect: New insights and definitions. Eur. J. Epidemiol. 16:601–606CrossRefGoogle Scholar
  63. 63.
    Koopman, J.S., Longini, I.M. (1994) The ecological effects of individual exposures and nonlinear disease dynamics in populations. Am. J. Public. Health. 84: 836–842CrossRefGoogle Scholar
  64. 64.
    Koopman, J.S., Longini, I.M., Jacquez, J.A., Simon, C.P., Ostrow, D.G., Martin, W.R., Woodcock, D.M. (1991) Assessing risk factors for transmission of infection. Am. J. Epidemiol. 133:1199–1209Google Scholar
  65. 65.
    Lipsitch, M., Cohen, T., Cooper, B., Robins, J.M., Ma, S., James, L., Gopalakrishna, G., Chew, S.K., Tan, C.C., Samore, M.H., Fisman, D., Murray, M. (2003) Transmission dynamics and control of severe acute respiratory syndrome. Science. 300:1966–1970CrossRefGoogle Scholar
  66. 66.
    Lloyd-Smith, J.O., Schreiber, S.J., Kopp, P.E., Getz, W.M. (2005) Superspreading and the effect of individual variation on disease emergence. Nature 438:355–359CrossRefGoogle Scholar
  67. 67.
    Longini, I.M., Datta, S., Halloran, M.E. (1996) Measuring vaccine efficacy for both susceptibility to infection and reduction in infectiousness for prophylactic HIV-1 vaccines. J. Acquir. Immune. Defic. Syndr. Hum. Retrovirol. 13:440–407Google Scholar
  68. 68.
    Longini, I.M., Sagatelian, K., Rida, W.N., Halloran, M.E. (1998) Optimal vaccine trial design when estimating vaccine efficacy for susceptibility and infectiousness from multiple populations. Stat. Med. 17:1121–1136CrossRefGoogle Scholar
  69. 69.
    May, R.M., Lloyd, A.L. (2001) Infection dynamics on scale-free networks. Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys. 64:066112Google Scholar
  70. 70.
    McCallum, H., Barlow, N., Hone, J. (2001) How should pathogen transmission be modelled? Trends. Ecol. Evol. 16:295–300CrossRefGoogle Scholar
  71. 71.
    Meynell, G.G., Meynell, E.W. (1958) The growth of micro-organisms in vivo with particular reference to the relation between dose and latent period. J. Hyg. (Lond) 56:323–346Google Scholar
  72. 72.
    Netea, M.G., Kullberg, B.J., Van der Meer, J.W. (2000) Circulating cytokines as mediators of fever. Clin. Infect. Dis. 31:S178–S184CrossRefGoogle Scholar
  73. 73.
    Nishiura, H. (2007) Early efforts in modeling the incubation period of infectious diseases with an acute course of illness. Emerg. Themes. Epidemiol. 4:2CrossRefGoogle Scholar
  74. 74.
    Nishiura, H. (2006) Incubation period as a clinical predictor of botulism: analysis of previous izushi-borne outbreaks in Hokkaido, Japan, from 1951 to 1965. Epidemiol. Infect. 135:126–130CrossRefGoogle Scholar
  75. 75.
    Nishiura, H. (2007) Lessons from previous predictions of HIV/AIDS in the United States and Japan: epidemiologic models and policy formulation. Epidemiol. Perspect. Innov.4:3CrossRefGoogle Scholar
  76. 76.
    Nishiura, H., Brockmann, S.O., Eichner, M. (2008) Extracting key information from historical data to quantify the transmission dynamics of smallpox. Theor. Biol. Med. Model.5:20CrossRefGoogle Scholar
  77. 77.
    Nishiura, H., Dietz, K., Eichner, M. (2006) The earliest notes on the reproduction number in relation to herd immunity: Theophil Lotz and smallpox vaccination. J. Theor. Biol. 241:964–967Google Scholar
  78. 78.
    Nishiura, H., Eichner, M. (2007) Infectiousness of smallpox relative to disease age: estimates based on transmission network and incubation period. Epidemiol. Infect. 135:1145–1150Google Scholar
  79. 79.
    Nishiura, H., Lee, H.W., Cho, S.H., Lee, W.G., In, T.S., Moon, S.U., Chung, G.T., Kim, T.S. (2007) Estimates of short and long incubation periods of Plasmodium vivax malaria in the Republic of Korea. Trans. R. Soc. Trop. Med. Hyg. 101:338–343CrossRefGoogle Scholar
  80. 80.
    Nishiura, H., Schwehm, M., Kakehashi, M., Eichner, M. (2006) Transmission potential of primary pneumonic plague: time inhomogeneous evaluation based on historical documents of the transmission network. J. Epidemiol. Community. Health. 60:640–645CrossRefGoogle Scholar
  81. 81.
    Nokes, D.J., Anderson, R.M. (1988) The use of mathematical models in the epidemiological study of infectious diseases and in the design of mass immunization programmes. Epidemiol. Infect. 101:1–20CrossRefGoogle Scholar
  82. 82.
    Nowak, M., May, R.M. (2000) Virus Dynamics: Mathematical Principles of Immunology and Virology. Oxford University Press, OxfordzbMATHGoogle Scholar
  83. 83.
    Orenstein, W.A., Bernier, R.H., Hinman, A.R. (1988) Assessing vaccine efficacy in the field. Further observations. Epidemiol. Rev. 10:212–241Google Scholar
  84. 84.
    Pickles, W. (1939) Epidemiology in Country Practice. John Wright & Sons, BristolGoogle Scholar
  85. 85.
    Rao, A.R., Jacob, E.S., Kamalakshi, S., Appaswamy, S., Bradbury (1968) Epidemiological studies in smallpox. A study of intrafamilial transmission in a series of 254 infected families. Indian. J. Med. Res. 56:1826–1854Google Scholar
  86. 86.
    Roberts, M.G., Heesterbeek, J.A. (2007) Model-consistent estimation of the basic reproduction number from the incidence of an emerging infection. J. Math. Biol. 55:803–816zbMATHCrossRefMathSciNetGoogle Scholar
  87. 87.
    Rosenberg, P.S., Gail, M.H. (1990) Uncertainty in estimates of HIV prevalence derived by backcalculation. Ann. Epidemiol. 1:105–115CrossRefGoogle Scholar
  88. 88.
    Rubin, D.B. (1990) Comment: Neyman (1923) and causal inference in experiments and observational studies. Stat. Sci. 5:472–480zbMATHGoogle Scholar
  89. 89.
    Sakar, J.K., Mitra, A.C., Mukherjee, M.K., De, S.K., Mazumdar, D.G. (1973) Virus excretion in smallpox. 1. Excretion in the throat, urine, and conjunctiva of patients. Bull. World Health Organ. 48:517–522Google Scholar
  90. 90.
    Sartwell, P.E. (1950) The distribution of incubation periods of infectious diseases. Am. J. Hyg. 51:310–318Google Scholar
  91. 91.
    Satou, K., Nishiura, H. (2007) Evidence of the partial effects of inactivated Japanese encephalitis vaccination: analysis of previous outbreaks in Japan from 1953 to 1960. Ann. Epidemiol. 17:271–277CrossRefGoogle Scholar
  92. 92.
    Simon, C.P., Koopman, J.S. (2001) Infection transmission dynamics and vaccination program effectiveness as a function of vaccine effects in individuals. In: Blower, S., Castillo-Chavez, C., van den Driessche, P., Yakubu, A.A. (eds.) Mathematical Approaches for Emerging and Reemerging Infectious Diseases : Models, Methods and Theory, pp. 143–155. Springer-Verlag, New YorkGoogle Scholar
  93. 93.
    Smith, C.E. (1964) Factors in the transmission of virus infections from animal to man. Sci. Basis. Med. Annu. Rev. i:125–150Google Scholar
  94. 94.
    Svensson, A. (2007) A note on generation time in epidemic models. Math. Biosci. 208:300–311zbMATHCrossRefMathSciNetGoogle Scholar
  95. 95.
    Tango, T. (1998) Maximum likelihood estimation of date of infection in an outbreak of diarrhea due to contaminated foods assuming lognormal distribution for the incubation period. Jpn. J. Public. Health. 45:129–141Google Scholar
  96. 96.
    Wallinga, J., Lipsitch, M. (2007) How generation intervals shape the relationship between growth rates and reproductive numbers. Proc. R. Soc. Lond. Ser. B. 274:599–604CrossRefGoogle Scholar
  97. 97.
    Wallinga, J., Teunis, P. (2004) Different epidemic curves for severe acute respiratory syndrome reveal similar impacts of control measures. Am. J. Epidemiol. 160:509–516CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Hiroshi Nishiura
    • 1
  • Masayuki Kakehashi
    • 2
  • Hisashi Inaba
    • 3
  1. 1.Theoretical EpidemiologyUniversity of Utrecht, Yalelaan 7UtrechtThe Netherlands
  2. 2.Graduate School of Health SciencesHiroshima University, 1-2-3 KasumiMinami-kuJapan
  3. 3.Graduate School of Mathematical SciencesUniversity of Tokyo, 3-8-1 KomabaMeguro-kuJapan

Personalised recommendations