Exploring Oxidative Stress in Plants: Proteomic and Genomic Approaches

  • Soumen Bhattacharjee


Formation of reactive oxygen species (ROS), maintenance of their titer through antioxidative defense, and subsequent redox regulation are inescapable events in plant cell during normal metabolic processes. Onset of environmental stresses, both abiotic and biotic, increase the intensity of ROS production many times in plant cell, which leads to a situation, where cell loose redox homeostasis oxidative stress. ROS, particularly hydrogen peroxide (H2O2), hydroxyl radicals (OH), and superoxide radicals (O2), are capable of causing serious damage to all important cellular metabolites and macromolecules like lipids, carbohydrates, proteins, and nucleic acids. To deal with a situation of oxidative stress, plants possess competent antioxidant defense machinery, comprising of antioxidative enzymes, water- and lipid-soluble antioxidant molecules, and ROS quenchers. The equilibrium between oxidative load and antioxidant defense capacity of plant cell decides the fate of the plant. Furthermore and more surprisingly, plants have also evolved a way to exploit lower titer of ROS as signaling component to regulate wide variety of plant processes like cell elongation, differentiation, morphogenesis, responses to environmental stress, etc. Therefore, to understand and explore the oxidative stress situation, accurate assessment of oxidative stress in plants requires sensitive and robust assays for both detection and quantification of ROS in the cell, as well as the identification and characterization of oxidative stress-induced changes at genomic and proteomic levels. Employing these approaches, not only the potential role played by ROS-induced modifications in stressed cells can be deciphered but also will help us to explore the ROS biology for crop improvement. This chapter presents an outline of the latest research endeavors in the field of ROS biology employing plant proteomics and genomics aimed at identifying the role of transcriptional and posttranslational modifications in plant cell under oxidative stress.


Oxidative stress Omic sciences Reactive oxygen species Posttranslational oxidative modification of proteins 


  1. Abbasi FM, Komatsu S (2004) A proteomic approach to analyze salt-responsive proteins in rice leaf sheath. Proteomics 4(7):2072–2081CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agarwal PK, Jha B (2010) Transcription factors in plants and ABA dependent and independent abiotic stress signaling. Biol Plant 54:201–212CrossRefGoogle Scholar
  3. Aggarwal K, Choe LH, Lee KH (2006) Shotgun proteomics using the iTRAQ isobaric tags. Brief Funct Genomic Proteomic 5:112–120CrossRefPubMedPubMedCentralGoogle Scholar
  4. Ali GM, Komatsu S (2006) Proteomic analysis of rice leaf sheath during drought stress. J Proteome Res 5(2):396–403CrossRefPubMedPubMedCentralGoogle Scholar
  5. Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM (2009) Comprehensive analysis of the Brassica juncea root proteome in response tocadmium exposure by complementary proteomic approaches. Proteomics 9:2419–2431CrossRefPubMedPubMedCentralGoogle Scholar
  6. Anderson LB, Ouellette AJ, Eaton-Rye J, Maderia M, MacCoss MJ, Yates JR, Barry BA (2004) Evidence for a post-translational modification, aspartyl aldehyde, in a photosynthetic membrane protein. J Am Chem Soc 126:8399–8405CrossRefPubMedPubMedCentralGoogle Scholar
  7. Anjum NA, Umar S, Chan MT (2010) Ascorbate-glutathione pathway and stress tolerance in plants. Springer, DordrechtCrossRefGoogle Scholar
  8. Anjum NA, Ahmad I, Mohmood I, Pacheco M, Duarte AC, Pereira E, Umar S, Ahmad A, Khan NA, Iqbal B, Prasad MNV (2012) Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – a review. Environ Exp Bot 75:307–324Google Scholar
  9. Arenhart RA, Lima JC, Pedron M, Carvalho FE (2013) Involvement of ASR genes in aluminium tolerance mechanisms in rice. Plant Cell Environ 36:52–67CrossRefPubMedPubMedCentralGoogle Scholar
  10. Auge GA, Perelman S, Crocco CD, Sanchez RA, Botto JF (2009) Gene expression analysis of light-modulated germination in tomato seeds. New Phytol 183:301–314CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bachem CW, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RG (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP, analysis of gene expression during potato tuber development. Plant J 9:745–753CrossRefPubMedPubMedCentralGoogle Scholar
  12. Badowiec A, Weidner S (2014) Proteomic changes in the roots of germinating Phaseolus vulgaris seeds in response to chilling stress and post-stress recovery. Biochem Biophys Acta 1844:1208–1218Google Scholar
  13. Barbey R, Baudouin-Cornu P, Lee TA, Rouillon A, Zarzov P, Tyers M, Thomas D (2005) Inducible dissociation of SCF(Met30) ubiquitin ligase mediates a rapid transcriptional response to cadmium. EMBO J 24:521–532CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bartoli CG, Gomez F, Martinez DE, Guiamet JJ (2004) Mitochondria are the main target for oxidative damage in leaves of wheat (Triticum aestivum L.). J Exp Bot 55:1663–1669CrossRefPubMedPubMedCentralGoogle Scholar
  15. Baty JW, Hampton MB, Winterbourn CC (2002) Detection of oxidant sensitive thiol proteins by fluorescence labeling and two-dimensional electrophoresis. Proteomics 2:1261–1266CrossRefPubMedPubMedCentralGoogle Scholar
  16. Bonifacio A, Martins MO, Ribeiro CW, Fontenele AV, Carvalho FEL, Margis-Pinheiro M, Silveira JAG (2011) Role of peroxidases in the compensation of cytosolic ascorbate peroxidase knockdown in rice plants under abiotic stress. Plant Cell Environ 34:1705–1722CrossRefPubMedPubMedCentralGoogle Scholar
  17. Boscolo PR, Menossi M, Jorge RA (2003) Aluminum-induced oxidative stress in maize. Phytochemistry 62:181–189CrossRefPubMedPubMedCentralGoogle Scholar
  18. Brachi B, Morris GP, Borevitz JO (2011) Genome-wide association studies in plants, the missing heritability is in the field. Genome Biol 12:232CrossRefPubMedPubMedCentralGoogle Scholar
  19. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermass E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634CrossRefPubMedPubMedCentralGoogle Scholar
  20. Busch W, Lohmann JU (2007) Profiling a plant, expression analysis in Arabidopsis. Curr Opin Plant Biol 10:136–141CrossRefPubMedPubMedCentralGoogle Scholar
  21. Buss H, Chan TP, Sluis KB, Domigan NM, Winterbourn CC (1997) Protein carbonyl measurement by a sensitive ELISA method. Free Radic Biol Med 23:361–366CrossRefPubMedPubMedCentralGoogle Scholar
  22. Caddihy SL, Baty JW, Brown KK, Winterbourn CC, Hampton MB (2008) Proteomic detection of oxidized and reduced thiol proteins in cultured cells. Methods Mol Biol 519:363–375Google Scholar
  23. Camerini S, Polci ML, Restuccia U, Usuelli V, Malgaroli A, Bachi A (2007) A novel approach to identify proteins modified by nitric oxide, the HIS-TAG switch method. J Proteome Res 6:3224–32331CrossRefPubMedPubMedCentralGoogle Scholar
  24. Chakraborty A, Bhattacharjee S (2015) Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. J Plant Physiol 176:65–77CrossRefPubMedPubMedCentralGoogle Scholar
  25. Chen Z, Gallie DR (2005) Increasing tolerance to ozone by elevating foliar ascorbic acid confers greater protection against ozone than increasing avoidance. Plant Physiol 138:1673–1689CrossRefPubMedPubMedCentralGoogle Scholar
  26. Chen JH, Lin YH (2010) Effect of aluminum on variations in the proteins in pineapple roots. Soil Sci Plant Nutr 56:438–444CrossRefGoogle Scholar
  27. Chen Z, Young TE, Ling J, Chang SC, Gallie DR (2003) Increasing vitamin C content of plants through enhanced ascorbate recycling. Proc Natl Acad Sci U S A 100:3525–3530CrossRefPubMedPubMedCentralGoogle Scholar
  28. Claiborne A, Miller H, Parsonage D, Ross RP (1993) Protein-sulfenic acid stabilization and function in enzyme catalysis and gene regulation. FASEB J 7:1483–1490CrossRefPubMedPubMedCentralGoogle Scholar
  29. Colcombet J, Hirt H (2008) Arabidopsis MAPKs, a complex signalling network involved in multiple biological processes. Biochem J 413:217–226CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cui S, Huang F, Wang J, Ma X, Cheng Y, Liu J (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5(12):3162–3172CrossRefPubMedPubMedCentralGoogle Scholar
  31. Cumming RC (2008) Analysis of global and specific changes in the disulfide proteome using redox two-dimensional polyacrylamide gel electrophoresis. Methods Mol Biol 476:165–179PubMedPubMedCentralGoogle Scholar
  32. Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR (2005) Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol 139:5–17CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dai H, Cao F, Chen X, Zhang M (2013) Comparative proteomic analysis of aluminum tolerance in tibetan wild and cultivated barleys. PLoS One 8:e63428CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clinic Chim Acta 329:23–38CrossRefGoogle Scholar
  35. Danquah A, de Zelicourt A, Colcombet J, Hirt H (2014) The role of ABA and MAPK signaling pathways in plant abiotic stress responses. Biotechnol Adv 32:40–52CrossRefPubMedPubMedCentralGoogle Scholar
  36. Davies MJ (2005) The oxidative environment and protein damage. Biochim Biophys Acta 1703:93–109CrossRefPubMedPubMedCentralGoogle Scholar
  37. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005a) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268–281CrossRefPubMedPubMedCentralGoogle Scholar
  38. Davletova S, Schlauch K, Coutu J, Mittler R (2005b) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol 139:847–856CrossRefPubMedPubMedCentralGoogle Scholar
  39. Dekkers BJ, Willems L, Bassel GW, van Bolderen-Veldkamp RP, Ligterink W, Hilhorst HW, Bentsink L (2012) Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds. Plant Cell Physiol 53:28–37CrossRefPubMedPubMedCentralGoogle Scholar
  40. Del Rio LA, Sandalio LM, Corpas FJ, Palma JM, Barroso JB (2006) Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging and role in cell signaling. Plant Physiol 141:330–335CrossRefPubMedPubMedCentralGoogle Scholar
  41. Desikan R, Neill SJ, Hancock JT (2000) Hydrogen peroxide-inducedgene expression in Arabidopsis thaliana. Free Radic Biol Med 28:773–778CrossRefPubMedPubMedCentralGoogle Scholar
  42. Doczi R, Brader G, Pettko-Szandtner A, Rajh I, Djamei A, Pitzschke A, Teige M, Hirt H (2007) The Arabidopsis mitogen-activated protein kinase kinase MKK3 is upstream of group C mitogen-activated protein kinases and participates in pathogen signaling. Plant Cell 19:3266–3279CrossRefPubMedPubMedCentralGoogle Scholar
  43. Duressa D, Soliman K, Taylor R, Senwo Z (2011) Proteomic analysis of soybean roots under aluminum stress. Int J Plant Genom 2011:1–12CrossRefGoogle Scholar
  44. Eaton P, Fuller W, Shattock MJ (2002) S-Thiolation of HSP27 regulates its multimeric aggregate size independently of phosphorylation. J Biol Chem 277:21189–21196CrossRefPubMedPubMedCentralGoogle Scholar
  45. Famoso AN, Zhao K, Clark RT, Tung C-W, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7:e1002221CrossRefPubMedPubMedCentralGoogle Scholar
  46. Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants, a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071CrossRefGoogle Scholar
  47. Fratelli M, Demol H, Puype M (2002) Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human T lymphocytes. Proc Natl Acad Sci U S A 99:3505–3510CrossRefPubMedPubMedCentralGoogle Scholar
  48. Fu C, Hu J, Liu T, Ago T, Sadoshima J, Li H (2008) Quantitative analysis of redox-sensitive proteome with DIGE and ICAT. J Proteome Res 7:3789–3802CrossRefPubMedPubMedCentralGoogle Scholar
  49. Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR, Sheen J, Rodriguez PL, Zhu JK (2009) In vitro reconstitution of an abscisic acid signalling pathway. Nature 462:660–664CrossRefPubMedPubMedCentralGoogle Scholar
  50. Fukuda M, Islam N, Woo S-H, Yamagishi A, Takaoka M, Hirano H (2003) Assessing matrix assisted laser desorption/ ionization-time of flight-mass spectrometry as a means of rapid embryo protein identification in rice. Electrophoresis 24:1319–1329CrossRefPubMedPubMedCentralGoogle Scholar
  51. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Van BF (2006) Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol 141:436–445CrossRefPubMedPubMedCentralGoogle Scholar
  52. Gevaert K, Van Damme J, Goethals M, Thomas GR, Hoorelbeke B, Demol H, Martens L, Puype M, Staes A, Vandekerckhove J (2002) Chromatographic isolation of methionine-containing peptides for gel-free proteome analysis, identification of more than 800 Escherichia coli proteins. Mol Cel Proteomics 1:896–903CrossRefGoogle Scholar
  53. Gevaert K, Ghesquière B, Staes A, Martens L, Van Damme J, Thomas GR, Vandekerckhove J (2004) Reversible labeling of cysteine-containing peptides allows their specific chromatographic isolation for non-gel proteome studies. Proteomics 4:897–908CrossRefPubMedPubMedCentralGoogle Scholar
  54. Gevaert K, Van Damme P, Ghesquière B, Vandekerckhove J (2006) Protein processing and other modifications analysed by diagonal peptide chromatography. Biochim Biophys Acta 1764:1801–1810CrossRefPubMedPubMedCentralGoogle Scholar
  55. Gharechahi J, Alizadeh H, Reza Naghavi M, Sharifi G (2014) A proteomic analysis to identify cold acclimation associated proteins in wild wheat (Triticum urartu L.). Mol Biol Rep 41:3897–3905CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ghezzi P, Bonetto V (2003) Redox proteomics, identification of oxidatively modified proteins. Proteomics 3:1145–1153CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ghezzi P, Romines B, Fratelli M, Eberini I, Gianazza E, Casagrande S, Laragione T, Mengozzi M, Herzenberg LA, Herzenberg LA (2001) Protein glutathionylation, coupling and uncoupling of glutathione to protein thiol groups in lymphocytes under oxidative stress and HIV infection. Mol Immunol 38:773–780CrossRefGoogle Scholar
  58. Giddings JC (1987) Concepts and comparisons in multidimensional separation. J High Resolut Chromatogr 10:319–323CrossRefGoogle Scholar
  59. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930CrossRefPubMedPubMedCentralGoogle Scholar
  60. Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants – probing the role of sulfur. Plant Signal Behav 6:215–222CrossRefPubMedPubMedCentralGoogle Scholar
  61. Gill SS, Anjum NA, Hasanuzzaman M, Gill R, Trivedi DK, Ahmad I, Pereira E, Tuteja N (2013) Glutathione and glutathione reductase, a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212CrossRefPubMedPubMedCentralGoogle Scholar
  62. Gitlin G, Tsarbopoulos A, Patel ST, Sydor W, Pramanik BN, Jacobs S, Westreich L, Mittelman S, Bausch JN (1996) Isolation and characterization of a monomethioninesulfoxide variant of interferon alpha-2b. Pharm Res 13:762–769CrossRefPubMedPubMedCentralGoogle Scholar
  63. Glaring MA, Skryhan K, Kotting O, Zeeman SC, Blennow A (2012) Comprehensive survey of redox sensitive starch metabolising enzymes in Arabidopsis thaliana. Plant Physiol Biochem 58:89–97CrossRefPubMedPubMedCentralGoogle Scholar
  64. Griffin TJ, Sherman J, Aebersold R (2001) Quantitative proteomics (ICAT™). Wiley, HobokenGoogle Scholar
  65. Groeger G, Quiney C, Cotter TG (2009) Hydrogen peroxide as a cell-survival signalling molecule. Antioxid Redox Signal 11:2655–2671CrossRefPubMedPubMedCentralGoogle Scholar
  66. Gygi SP, Aebersold R (2000) Mass spectrometry and proteomics. Curr Opin Chem Biol 4:489–494CrossRefPubMedPubMedCentralGoogle Scholar
  67. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotech 17:994–999CrossRefGoogle Scholar
  68. Harris TK, Turner GJ (2002) Structural basis of perturbed pKa values of catalytic groups in enzyme active sites. Int Union Biochem Mol Biol Life 53:85–98CrossRefGoogle Scholar
  69. Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette ML, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765CrossRefPubMedPubMedCentralGoogle Scholar
  70. Hu W, Huang C, Deng X, Zhou S, Chen L, Li Y, Wang C, Ma Z, Yuan Q, Wang Y, Cai R, Liang X, Yang G, He G (2013) TaASR1, a transcription factor gene in wheat, confers drought stress tolerance in transgenic tobacco. Plant Cell Environ 36:1449–1464CrossRefPubMedPubMedCentralGoogle Scholar
  71. Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:230CrossRefPubMedPubMedCentralGoogle Scholar
  72. Huang GT, Ma SL, Bai LP, Zhang L, Ma H, Jia P, Liu J, Zhong M, Guo ZF (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39:969–987CrossRefPubMedPubMedCentralGoogle Scholar
  73. Huang XS, Wang W, Zhang Q, Liu JH (2013) A basic helix-loop-helix transcription factor, PtrbHLH, of Poncirus trifoliata confers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide. Plant Physiol 162:1178–1194CrossRefPubMedPubMedCentralGoogle Scholar
  74. Huang L, Yan H, Jiang X, Yin G, Zhang X, Qi X, Zhang Y, Yan Y, Ma X, Peng Y (2014) Identification of candidate reference genes in perennial ryegrass for quantitative RT-PCR under various abiotic stress conditions. Plos One 9:e93724. Scholar
  75. Hussain SS, Kayani MA, Amjad M (2011) Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol Prog 27:297–306CrossRefPubMedPubMedCentralGoogle Scholar
  76. Jaffrey SR, Snyder SH (2001) The biotin switch method for the detection of S-nitrosylated proteins. Sci STKE 2001(86):pl1PubMedPubMedCentralGoogle Scholar
  77. Job C, Rajjou L, Lovigny Y, Belghazi M, Job D (2005) Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol 138:790–802CrossRefPubMedPubMedCentralGoogle Scholar
  78. Karuppanapandian T, Rhee SJ, Kim EJ, Han BK (2012) Proteomic analysis of differentially expressed proteins in the roots of Columbia-0 and Landsberg erecta ecotypes of Arabidopsis thaliana in response to aluminum-toxicity. Can J Plant Sci 92:1267–1282CrossRefGoogle Scholar
  79. Kawashima CG, Noji M, Nakamura M, Ogra Y, Suzuki KT, Saito K (2004) Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol Lett 26:153–157CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ke Y, Han G, He H, Li J (2009) Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophys Res Commun 379:133–138CrossRefPubMedPubMedCentralGoogle Scholar
  81. Keller RJ, Halmes NC, Hinson JA, Pumford NR (1993) Immunochemical detection of oxidized proteins. Chem Res Toxicol 6:430–433CrossRefPubMedPubMedCentralGoogle Scholar
  82. Khan M, Jan J, Karibe H, Komatsu S (2005) Identification of phosphoproteins regulated by gibberellins in rice leaf sheath. Plant Mol Biol 58:27–44CrossRefPubMedPubMedCentralGoogle Scholar
  83. Khan NA, Singh S, Umar S (2008) Sulfur assimilation and abiotic stress in plants. Springer, Berlin/Heidelberg/Germany, p 372Google Scholar
  84. Kim JB, Kang JY, Kim SY (2004) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol J 2:459–466CrossRefPubMedPubMedCentralGoogle Scholar
  85. Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944CrossRefPubMedPubMedCentralGoogle Scholar
  86. Knoefler D, Thamsen M, Koniczek M, Niemuth NJ, Diederich AK, Jakob U (2012) Quantitative in vivo redox sensors uncover oxidative stress as an early event in life. Mol Cell 47:767–776CrossRefPubMedPubMedCentralGoogle Scholar
  87. Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J et al (2002) Proteomic survey of metabolic pathways in rice. Proc Natl Acad Sci U S A 99:11969–11974CrossRefPubMedPubMedCentralGoogle Scholar
  88. Kopriva S, Mugford SG, Baraniecka P, Lee BR, Matthewman CA, Koprivova A (2012) Control of sulfur partitioning between primary and secondary metabolism in Arabidopsis. Front Plant Sci 3: 163Google Scholar
  89. Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kristensen BK, Askerlund P, Bykova NV, Egsgaard H, Moller IM (2004) Identification of oxidised proteins in the matrix of rice leaf mitochondria by immunoprecipitation and two-dimensional liquid chromatography tandem mass spectrometry. Phytochemistry 65:1839–1851CrossRefPubMedPubMedCentralGoogle Scholar
  91. Kumar D, Datta R, Sinha R, Ghosh A, Chattopadhyay S (2014) Proteomic profiling of γ-ECS overexpressed transgenic Nicotiana in response to drought stress. Planta 9:e29246Google Scholar
  92. Kwon SY, Jeong YJ, Lee HS, Kim JS, Cho KY, Allen RD, Kwak SS (2002) Enhanced tolerances of transgenic tobacco plants expressing both superoxide dismutase and ascorbate peroxidase in chloroplasts against methyl viologen-mediated oxidative stress. Plant Cell Environ 25:873–882CrossRefGoogle Scholar
  93. Kwon SY, Choi SM, Ahn YO, Lee HS, Lee HB, Park YM, Kwak SS (2003) Enhanced stress-tolerance of transgenic tobacco plants expressing a human dehydroascorbate reductase gene. J Plant Physiol 160:347–353CrossRefPubMedPubMedCentralGoogle Scholar
  94. Lan P, Li W, Wen T-N, Shiau J-Y, Wu Y-C, Lin W, Schmidt W (2011) iTRAQ protein profile analysis of Arabidopsis roots reveals new aspects critical for iron homeostasis. Plant Physiol 155:821–834CrossRefPubMedPubMedCentralGoogle Scholar
  95. Landry LG, Chapple CC, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–1166CrossRefPubMedPubMedCentralGoogle Scholar
  96. Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous overexpression of both CuZn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638CrossRefPubMedPubMedCentralGoogle Scholar
  97. Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, Walker AK, Strahler JR, Andrews PC, Jakob U (2008) Proc Natl Acad Sci U S A 105:8197–8202CrossRefPubMedPubMedCentralGoogle Scholar
  98. Levine RL, Stadtman ER (2001) Oxidative modification of proteins during aging. Exp Gerontol 36:1495–1502CrossRefPubMedPubMedCentralGoogle Scholar
  99. Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz A, Ahn B, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478CrossRefPubMedPubMedCentralGoogle Scholar
  100. Levine RL, Williams J, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357CrossRefPubMedPubMedCentralGoogle Scholar
  101. Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93:15036–15040CrossRefPubMedPubMedCentralGoogle Scholar
  102. Li Q, Fan CM, Zhang XM, Fu YF (2012) Validation of reference genes for real-time quantitative PCR normalization in soybean developmental and germinating seeds. Plant Cell Rep 31:1789–1798CrossRefPubMedPubMedCentralGoogle Scholar
  103. Liang P, Pardee A (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971CrossRefPubMedPubMedCentralGoogle Scholar
  104. Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR, Garvik BM (1999) Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17:676–682CrossRefPubMedPubMedCentralGoogle Scholar
  105. Liu JX, Bennett J (2011) Reversible and irreversible drought-induced changes in the anther proteome of rice (Oryza sativa L.) genotypes IR64 and moroberekan. Mol Plant 4:59–69CrossRefPubMedPubMedCentralGoogle Scholar
  106. Liu GT, Ma L, Duan W, Wang BC, Li JH, Xu HG, Yan XQ, Yan BF, Li S, Wang L, Li J (2014) Differential proteomic analysis of grapevine leaves by iTRAQ reveals responses to heat stress and subsequent recovery. BMC Plant Biol 14:110CrossRefPubMedPubMedCentralGoogle Scholar
  107. Lu H, Rate DN, Song JT, Greenberg JT (2003) ACD6, a novel ankyrin protein, is a regulator and an effector of salicylic acid signaling in the Arabidopsis defense response. Plant Cell 15:2408–2420CrossRefPubMedPubMedCentralGoogle Scholar
  108. Lumbreras V, Vilela B, Irar S, Sole M, Capellades M, Valls M, Coca M, Pagès M (2010) MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J 63:1017–1030CrossRefPubMedPubMedCentralGoogle Scholar
  109. Ma Y, Szostkiewicz I, Korte A, Moes D, Yang Y, Christmann A, Grill E (2009) Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324:1064–1068PubMedPubMedCentralGoogle Scholar
  110. Ma Y, Qin F, Tran LSP (2012) Contribution of genomics to gene discovery in plant abiotic stress responses. Mol Plant 5:1176–1178CrossRefPubMedPubMedCentralGoogle Scholar
  111. MacCoss MJ, McDonald WH, Saraf A, Sadygov R, Clark JM, Tasto JJ, Gould KL (2002) Shotgun identification of protein modifications from protein complexes and lens tissue. Proc Natl Acad Sci U S A 99:7900–7905CrossRefPubMedPubMedCentralGoogle Scholar
  112. Madian AG, Regnier FE (2010) Proteomic Identification of Carbonylated Proteins and Their Oxidation Sites. J Proteome Res 9:3766–3780CrossRefPubMedPubMedCentralGoogle Scholar
  113. Maier KL, Lenz AG, Beck-Speier I, Costabel U (1995) Analysis of methionine sulfoxide in proteins. Methods Enzymol 251:455–461CrossRefPubMedPubMedCentralGoogle Scholar
  114. Matsumura T, Tabayashi N, Kamagata Y, Souma C, Saruyama H (2002) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol Plant 116:317–327CrossRefGoogle Scholar
  115. Miles GP, Samuel MA, Ellis BE (2009) Suppression of MKK5 reduces ozone-induced signal transmission to both MPK3 and MPK6 and confers increased ozone sensitivity in Arabidopsis thaliana. Plant Signal Behav 4:687–692CrossRefPubMedPubMedCentralGoogle Scholar
  116. Mishra NS, Tuteja R, Tuteja N (2006) Signaling through MAP kinase networks in plants. Arch Biochem Biophys 452:55–68CrossRefPubMedPubMedCentralGoogle Scholar
  117. Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications of cellular proteins. Annu Rev Plant Biol 58:459–481CrossRefGoogle Scholar
  118. Najami N, Janda T, Barriah W, Kayam G, Tal M, Guy M, Volokita M (2008) Ascorbate peroxidase gene family in tomato, its identification and characterization. Mol Gen Genomics 279:171–182CrossRefGoogle Scholar
  119. Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704CrossRefPubMedPubMedCentralGoogle Scholar
  120. Nakamura A, Goto S (1996) Analysis of protein carbonyls with 2, 4-dinitrophenylhydrazine and its antibodies by immunoblot in two-dimensional gel electrophoresis. J Biochem 119:768–774CrossRefPubMedPubMedCentralGoogle Scholar
  121. Narsai R, Ivanova A, Ng S, Whelan J (2010) Defining reference genes in Oryza sativa using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol 10:56CrossRefPubMedPubMedCentralGoogle Scholar
  122. Navascues J, Perez-Rontome C, Sanchez DH, Staudinger C (2012) Oxidative stress is a consequence, not a cause, of aluminum toxicity in the forage legume Lotus corniculatus. New Phytol 193:625–636CrossRefPubMedPubMedCentralGoogle Scholar
  123. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914CrossRefPubMedPubMedCentralGoogle Scholar
  124. Ning J, Li X, Hicks LM, Xiong L (2010) A Raf-like MAPKKK gene DSM1 mediates drought resistance through reactive oxygen species scavenging in rice. Plant Physiol 152:876–890CrossRefPubMedPubMedCentralGoogle Scholar
  125. Noji M, Saito K (2007) Metabolic engineering of sulfur assimilation in plants. In: Verpoorte R et al (eds) Applications of plant metabolic engineering. Springer, Dordrecht, pp 297–309CrossRefGoogle Scholar
  126. Nolan T, Hands RE, Bustin SA (2006) Quantification of mRNA using real-time RT-PCR. Nat Protoc 1:1559–1582CrossRefPubMedPubMedCentralGoogle Scholar
  127. Ortiz-Masia D, Perez-Amador MA, Carbonell J, Marcote MJ (2007) Diverse stress signals activate the C1 subgroup MAP kinases of Arabidopsis. FEBS Lett 581:1834–1840CrossRefPubMedPubMedCentralGoogle Scholar
  128. Ouellette AJ, Anderson LB, Barry BA (1998) Amine binding and oxidation at the catalytic site for photosynthetic water oxidation. Proc Natl Acad Sci U S A 95:2204–2209CrossRefPubMedPubMedCentralGoogle Scholar
  129. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart NJ, Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman BF, Cutler SR (2009) Abscisic acid inhibits Type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324:1068–1071PubMedPubMedCentralGoogle Scholar
  130. Parker R, Flowers TJ, Moore AL, Harpham NVJ (2006) An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina. J Exp Bot 57(5):1109–1118CrossRefPubMedPubMedCentralGoogle Scholar
  131. Pastore A, Piemonte F (2012) S-Glutathionylation signaling in cell biology: progress and prospects. Eur J Pharm Sci 46:279–292CrossRefPubMedPubMedCentralGoogle Scholar
  132. Pimentel D, Haeussler DJ, Matsui R, Burgoyne JR, Cohen RA, Bachschmid MM (2012) Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 16:524–542CrossRefPubMedPubMedCentralGoogle Scholar
  133. Pitzschke A (2012) Make Your Best-MYB transcription factors for improving abiotic stress tolerance in crops (Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds)). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 481–506Google Scholar
  134. Pitzschke A (2013) From bench to barn, plant model research and its applications in agriculture. Adv Genet Eng.
  135. Prasad TK (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings, changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J 10:1017–1026CrossRefGoogle Scholar
  136. Prashanth S, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica Rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291CrossRefPubMedPubMedCentralGoogle Scholar
  137. Rabilloud T, Chevallet M, Luche S, Leize-Wagner E (2005) Oxidative stress response, a proteomic view. Exp Rev Pro 2:949–956CrossRefGoogle Scholar
  138. Rausch T, Wachter A (2005) Sulfur metabolism, a versatile platform for launching defence operations. Trends Plant Sci 10:503–509CrossRefPubMedPubMedCentralGoogle Scholar
  139. Reddy VY, Desorchers PE, Pizzo SV, Gonias SL, Sahakian JA, Levine RL, Weiss SJ (1994) Oxidative dissociation of human alpha 2-macroglobulin tetramers into dysfunctional dimmers. J Biol Chem 269:4683–4691PubMedPubMedCentralGoogle Scholar
  140. Rentel RC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis. Nature 427:858–861CrossRefPubMedPubMedCentralGoogle Scholar
  141. Robinson CE, Kashavarzian A, Pasco DS, Frommel TO, Winshop DH, Holmes EW (1999) Determination of protein carbonyl groups by immunoblotting. Anal Biochem 266:48–57CrossRefPubMedPubMedCentralGoogle Scholar
  142. Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649CrossRefPubMedPubMedCentralGoogle Scholar
  143. Roos G, Messens J (2011) Protein sulfenic acid formation: From cellular damage to redox regulation. Free Radic Biol Med 51:314–326CrossRefPubMedPubMedCentralGoogle Scholar
  144. Roxas VP, Smith RK, Allen ER, Allen RD (1997) Overexpression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco seedlings during stress. Nat Biotechnol 15:988–991CrossRefPubMedPubMedCentralGoogle Scholar
  145. Saito K (2000) Regulation of sulfate transport and synthesis of sulfur-containing amino acids. Curr Plant Biol Opin 3:188–195CrossRefGoogle Scholar
  146. Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145CrossRefPubMedPubMedCentralGoogle Scholar
  147. Samelson LE (2001) Diagonal gel electrophoresis. Current protocols in immunology, Chapter 8, Unit 8.6.Google Scholar
  148. Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics 6:2180–2198CrossRefPubMedPubMedCentralGoogle Scholar
  149. Sato Y, Masuta Y, Saito K, Murayama S, Ozawa K (2011) Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene, OsAPXa. Plant Cell Rep 30:399–406CrossRefPubMedPubMedCentralGoogle Scholar
  150. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470CrossRefPubMedPubMedCentralGoogle Scholar
  151. Schulze A, Downward J (2001) Navigating gene expression using microarrays–a technology review. Nat Cell Biol 3:E190–E195CrossRefPubMedPubMedCentralGoogle Scholar
  152. Schurmann P, Buchanan BB (2008) The ferredoxin/thioredoxin system of oxygenic photosynthesis. Antioxid Redox Signal 10:1235–1273CrossRefPubMedPubMedCentralGoogle Scholar
  153. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2:282–291CrossRefGoogle Scholar
  154. Sell S, Lindermayr C, Durner J (2008) Identification of S-nitrosylated proteins in plants. Methods Enzymol 440:283–293CrossRefGoogle Scholar
  155. Sethuraman M, McComb ME, Huang H, Huang S, Heibeck T, Costello CE, Cohen RA (2004) Isotope-coded affinity tag (ICAT) approach to redox proteomics, identification and quantitation of oxidant-sensitive cysteine thiols in complex protein mixtures. J Proteome Res 3:1228–1233CrossRefGoogle Scholar
  156. Shacter E, Williams JA, Lim M, Levine RL (1994) Differential susceptibility of plasma proteins to oxidative modification. Examination by Western blot immunoassay. Free Radic Biol Med 17:429–437CrossRefPubMedPubMedCentralGoogle Scholar
  157. Shi S, Wang G, Wang Y, Zhang L, Zhang L (2005) Protective effect of nitric oxide against oxidative stress under ultraviolet-B radiation. Nitric Oxide 13:1–9CrossRefGoogle Scholar
  158. Sinha AK, Jaggi M, Raghuram B, Tuteja N (2011) Mitogen-activated protein kinase signaling in plants under abiotic stress. Plant Signal Behav 6:196–203CrossRefPubMedPubMedCentralGoogle Scholar
  159. Smékalová V, Doskočilová A, Komis G, Šamaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotechnol Adv 32:2–11CrossRefPubMedPubMedCentralGoogle Scholar
  160. Smith MA, Sayre LM, Anderson VE, Harris PLR, Beal MF, Kowall N, Perry G (1998) Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J Histochem Cytochem 46:731–735CrossRefPubMedPubMedCentralGoogle Scholar
  161. Stadtman ER (1992) Protein oxidation and aging. Science 257(5074):1220–1224CrossRefPubMedPubMedCentralGoogle Scholar
  162. Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38CrossRefPubMedPubMedCentralGoogle Scholar
  163. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40(12):1250–1258CrossRefGoogle Scholar
  164. Stadtman ER, Moskovitz J, Levine RL (2003) Oxidation of methionine residues of proteins: biological consequences. Antioxid Redox Signal 5(5):577–582CrossRefGoogle Scholar
  165. Stears RL, Martinsky T, Schena M (2003) Trends in microarray analysis. Nat Med 9:140–145CrossRefGoogle Scholar
  166. Strable J, Borsuk L, Nettleton D, Schnable PS, Irish EE (2008) Microarray analysis of vegetative phase change in maize. Plant J 56:1045–1057CrossRefGoogle Scholar
  167. Sullivan DM, Wehr NB, Fergusson MM, Levine RL, Finkel T (2000) Identification of oxidant-sensitive proteins, TNF-alpha induces protein glutathiolation. Biochemist 39:11121–11128CrossRefGoogle Scholar
  168. Takahashi H, Watanabe-Takahashi A, Smith F, Blake-Kalff M, Hawkesford M, Daito K (2000) The role of three functional sulfate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–182CrossRefGoogle Scholar
  169. Takesawa T, Ito M, Kanzaki H, Kameya N, Nakamura I (2002) Over-expression of zeta glutathione S-transferase in transgenic rice enhances germination and growth at low temperature. Mol Breed 9:93–101CrossRefGoogle Scholar
  170. Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138CrossRefGoogle Scholar
  171. Taski-Ajdukovic K, Nagl N, Kovacev L, Curcic Z, Danojevic D (2012) Development and application of qRT-PCR for sugar beet gene expression analysis in response to in vitro induced water deficit. Electron J Biotechnol North America 1529:10Google Scholar
  172. Teige M, Scheikl E, Eulgem T, Doczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152CrossRefGoogle Scholar
  173. Udvardi MK, Kakar K, Wandrey M, Montanari O, Murray J, Andriankaja A, Zhang JY, Benedito V, Hofer JM, Chueng F, Town CD (2007) Legume transcription factors, global regulators of plant development and response to the environment. Plant Physiol 144:538–549CrossRefPubMedPubMedCentralGoogle Scholar
  174. Vanguilder HD, Vrana KE, Freeman WN (2008) Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques 44:619–626CrossRefGoogle Scholar
  175. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487CrossRefPubMedPubMedCentralGoogle Scholar
  176. Vera-Estrella R, Barkla BJ, Pantoja O (2014) Comparative 2D-DIGE analysis of salinity responsive microsomal proteins from leaves of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea. Proteomics.
  177. Verslues PE, Lasky JR, Juenger TE, Liu TW, Kumar MN (2014) Genome-wide association mapping combined with reverse genetics identifies new effectors of low water potential-induced proline accumulation in Arabidopsis. Plant Physiol 164:144–159CrossRefPubMedPubMedCentralGoogle Scholar
  178. Wan XY, Liu JY (2008) Comparative proteomics analysis reveals an intimate protein network provoked by hydrogen peroxide stress in rice seedling leaves. Mol Cell Proteomics 7(8):1469–1488CrossRefPubMedPubMedCentralGoogle Scholar
  179. Wang Linqian DY, Zhiguang T (2010) iTRAQ labeling and biomarker discovery in comparative proteomic studies. Chem Life 30:135–140Google Scholar
  180. Wang F-Z, Wang Q-B, Kwon S-Y, Kwak S-S, Su W-A (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472. 51CrossRefPubMedPubMedCentralGoogle Scholar
  181. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq, a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63CrossRefPubMedPubMedCentralGoogle Scholar
  182. Wang L, Li P, Brutnell TP (2010) Exploring plant transcriptomes using ultra high-throughput sequencing. Brief Funct Genomics 9:118–128CrossRefPubMedPubMedCentralGoogle Scholar
  183. Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, Yao N, Feng Y, Chai R, Yang G, He G (2013a) A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PloS One 8:e65120CrossRefPubMedPubMedCentralGoogle Scholar
  184. Wang CY, Shen RF, Wang C, Wang W (2013b) Root protein profile changes induced by Al exposure in two rice cultivars differing in Al tolerance. J Proteome 78:281–293CrossRefGoogle Scholar
  185. Wang T, Hao R, Pan H, Cheng T, Zhang Q (2014a) Selection of suitable reference genes for quantitative real-time polymerase chain reaction in Prunus mume during flowering stages and under different abiotic stress conditions. J Am Soc Hortic Sci 139:113–122CrossRefGoogle Scholar
  186. Wang ZQ, Xu XY, Gong QQ, Xie C, Fan W, Yang JL, Lin QS, Zheng SJ (2014b) Root proteome of rice studied by iTRAQ provides integrated insight into aluminum stress tolerance mechanisms in plants. J Proteome 98:189–205CrossRefGoogle Scholar
  187. Washburn MP, Wolters D, Yates JR (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotech 19:242–247CrossRefGoogle Scholar
  188. Wehr NB, Levine RL (2013) Quantification of protein carbonylation. Methods Mol Biol 965:265–281CrossRefPubMedPubMedCentralGoogle Scholar
  189. Wirtz M, Hell R (2003) Production of cysteine for bacterial and plant biotechnology, Application of cysteine feedback-insensitive isoforms of serine acetyltransferase. Amino Acids 24:195–203CrossRefPubMedPubMedCentralGoogle Scholar
  190. Wolters DA, Washburn MP, Yates JR (2001) An automated multidimensional protein identification technology for shotgun analysis. Anal Chem 73:5683–5690CrossRefPubMedPubMedCentralGoogle Scholar
  191. Wu WW, Baek GWSJ, Shen RF (2005) Comparative study of three proteomic quantitative methods, DIGE, clCAT, and iTRAQ, using 2D Gel- or LC- MALDI TOF/TOF. J Proteome Res 5:651–658CrossRefGoogle Scholar
  192. Xiong Y, Uys JD, Tew KD, Townsend DM (2011) S-glutathionylation: from molecular mechanisms to health outcomes. Antioxid Redox Signal 15:233–270CrossRefPubMedPubMedCentralGoogle Scholar
  193. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803CrossRefPubMedPubMedCentralGoogle Scholar
  194. Yan LJ (2009) Analysis of oxidative modification of proteins. Curr Protoc Protein Sci 14:144Google Scholar
  195. Yan LJ, Forster MJ (2011) Chemical probes for analysis of carbonylated proteins. J Chromatogr B Analyt Technol Biomed Life Sci 879:1308–1315CrossRefPubMedPubMedCentralGoogle Scholar
  196. Yan LJ, Sohal RS (1998) Mitochondrial adenine nucleotide translocase is modified oxidatively during aging. Proc Natl Acad Sci U S A 95:12896–12901CrossRefPubMedPubMedCentralGoogle Scholar
  197. Yan LJ, Sohal RS (2000) Prevention of flight activity prolongs the life span of the housefly, Musca domestica, and attenuates the age-associated oxidative damage to specific mitochondrial proteins. Free Radic Biol Med 29:1143–1150CrossRefPubMedPubMedCentralGoogle Scholar
  198. Yan LJ, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A 94:11168–11172CrossRefPubMedPubMedCentralGoogle Scholar
  199. Yan LJ, Orr WC, Sohal RS (1998) Identification of oxidized proteins based on sodium dodecyl sulphate–polyacrylamide gel electrophoresis, immunochemical detection, isoelectric focusing, and microsequencing. Anal Biochem 263:67–71CrossRefPubMedPubMedCentralGoogle Scholar
  200. Yan LJ, Christians ES, Liu L, Xiao X, Sohal RS, Benjamin IJ (2002) Mouse heat shock transcription factor 1 deficiency alters cardiac redox homeostasis and increases mitochondrial oxidative damage. EMBO J 21:5164–5172CrossRefPubMedPubMedCentralGoogle Scholar
  201. Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244CrossRefPubMedPubMedCentralGoogle Scholar
  202. Yang LM, Tian DG, Todd CD, Luo YM, Hu XY (2013) Comparative proteome analyses reveal that nitric oxide is an important signal molecule in the response of rice to aluminum toxicity. J Proteome Res 12:1316–1330CrossRefPubMedPubMedCentralGoogle Scholar
  203. Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K (2010) Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. Planta 231:609–621CrossRefPubMedPubMedCentralGoogle Scholar
  204. Ying J, Clavreul N, Sethuraman M, Adachi T, Cohen RA (2007) Thiol oxidation in signaling and response to stress: detection and quantification of physiological and pathophysiological thiol modifications. Free Radic Biol Med 43:1099–1108CrossRefPubMedPubMedCentralGoogle Scholar
  205. Youssefian S, Nakamura M, Orudgev E, Kondo N (2001) Increased cysteine biosynthesis capacity of transgenic tobacco overexpressing an O-acetylserine (thiol) lyase modifies plant responses to oxidative stress. Plant Physiol 126:1001–1011CrossRefPubMedPubMedCentralGoogle Scholar
  206. Zhao F, Zhang H (2006) Salt and paraquat stress tolerance results from co-expression of the Suaeda salsa glutathione S-transferase and catalase in transgenic rice. Plant Cell Tiss Org Cult 86:349–358CrossRefGoogle Scholar
  207. Zhen Y, Qi JL, Wang SS, Su J (2007) Comparative proteome analysis of differentially expressed proteins induced by Al toxicity in soybean. Physiol Plant 131:542–554CrossRefPubMedPubMedCentralGoogle Scholar
  208. Zheng M, Meng Y, Yang C, Zhou Z, Wang Y, Chen B (2014) Protein expression changes during cotton fiber elongation in response to drought stress and recovery. Int J Proteomics.
  209. Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G, He G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PloS One 7:e52439CrossRefPubMedPubMedCentralGoogle Scholar
  210. Zhu YL, Pilon-Smits EAH, Jouanin L, Terry T (1999) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium accumulation and tolerance. Plant Physiol 119:73–79CrossRefGoogle Scholar
  211. Zhu Y, Fu J, Zhang J, Liu T, Jia Z, Wang J, Jin Y, Lian Y, Wang M, Zheng J, Hou W, Wang G (2009) Genome-wide analysis of gene expression profiles during ear development of maize. Plant Mol Biol 70:63–77CrossRefPubMedPubMedCentralGoogle Scholar
  212. Zieske LR (2006) A perspective on the use of iTRAQ reagent technology for protein complex and profiling studies. J Exp Bot 57:1501–1508CrossRefPubMedPubMedCentralGoogle Scholar
  213. Zweier JL, Chen CA, Druhan LJ (2011) S-glutathionylation reshapes our understanding of endothelial nitric oxide synthase uncoupling and nitric oxide/reactive oxygen species-mediated signaling. Antioxid Redox Signal 14:1769–1775CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature India Private Limited 2019

Authors and Affiliations

  • Soumen Bhattacharjee
    • 1
  1. 1.Department of BotanyUGC Centre For Advanced Study, The University of BurdwanBurdwanIndia

Personalised recommendations